On instanton effects in the operator product expansion

被引:0
|
作者
Luis F. Alday
Gregory P. Korchemsky
机构
[1] University of Oxford,Mathematical Institute
[2] Institut de Physique Théorique,undefined
[3] (Unité Mixte de Recherche 3681 du CNRS) Université Paris Saclay,undefined
[4] CNRS,undefined
[5] CEA,undefined
关键词
Nonperturbative Effects; Solitons Monopoles and Instantons; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the computation of instanton effects to various correlation functions in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM and clarify a controversy existing in the literature regarding their consistency with the OPE and conformal symmetry. To check these properties, we examine the conformal partial wave decomposition of four-point correlators involving combinations of half-BPS and Konishi operators and isolate the contribution from the conformal primary scalar operators of twist four. We demonstrate that the leading instanton correction to this contribution is indeed consistent with conformal symmetry and compute the corresponding corrections to the OPE coefficients and the scaling dimensions of such twist-four operators. Our analysis justifies the regularization procedure used to compute ultraviolet divergent instanton contribution to correlation functions involving unprotected operators.
引用
下载
收藏
相关论文
共 50 条
  • [21] OPERATOR-PRODUCT EXPANSION IN DIMENSIONAL RENORMALIZATION
    GUPTA, S
    PHYSICAL REVIEW D, 1979, 20 (12): : 3160 - 3167
  • [22] CONFORMAL OPERATOR PRODUCT EXPANSION IN THE YUKAWA MODEL
    PRATI, MC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1983, 78 (01): : 1 - 16
  • [23] The Lorentz anomaly via operator product expansion
    Fredenhagen, Stefan
    Hoppe, Jens
    Hynek, Mariusz
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [24] THE CUT VERTEX FORMALISM AND THE OPERATOR PRODUCT EXPANSION
    MUNEHISA, T
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (03): : 882 - 893
  • [25] Conformal partial waves and the operator product expansion
    Dolan, FA
    Osborn, H
    NUCLEAR PHYSICS B, 2004, 678 (1-2) : 491 - 507
  • [26] Three-cocycles and the operator product expansion
    Muniain, JP
    Wudka, J
    PHYSICAL REVIEW D, 1997, 55 (09): : 5341 - 5348
  • [27] Recursive Construction of Operator Product Expansion Coefficients
    Jan Holland
    Stefan Hollands
    Communications in Mathematical Physics, 2015, 336 : 1555 - 1606
  • [28] OPERATOR PRODUCT EXPANSION IN THE MINIMAL SUBTRACTION SCHEME
    CHETYRKIN, KG
    GORISHNY, SG
    TKACHOV, FV
    PHYSICS LETTERS B, 1982, 119 (4-6) : 407 - 411
  • [29] Superasymptotic and hyperasymptotic approximation to the operator product expansion
    Ayala, Cesar
    Lobregat, Xabier
    Pineda, Antonio
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [30] Operator product expansion and its thermal average
    Mallik, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 64 : 495 - 497