A Class of Nonlocal Impulsive Problems for Integrodifferential Equations in Banach Spaces

被引:0
|
作者
JinRong Wang
W. Wei
机构
[1] Guizhou University,College of Science of Guizhou University
来源
Results in Mathematics | 2010年 / 58卷
关键词
34K30; 34G20; 34A60; Integrodifferential equations; nonlocal conditions; impulsive conditions; fixed point theorem; existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and uniqueness of the PC-mild solution for a class of nonlinear integrodifferential impulsive differential equations with nonlocal conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l} x'(t)=Ax(t)+f\left(t,x(t), \int_{0}^{t}k(t,s,x(s))ds\right), \quad t\in J=[0,b], \,\, t\neq t_{i},\\ x(0)=g(x)+x_{0},\\ \Delta x(t_{i})=I_{i}(x(t_{i})), \quad i=1,2,\ldots,p, \,\, 0=t_{0} < t_{1} < \cdots < t_{p} < t_{p+1}=b.\end{array} \right.$$\end{document}Using the generalized Ascoli-Arzela theorem given by us, some fixed point technique including Schaefer fixed point theorem and Krasnoselskii fixed point theorem, and theory of operators semigroup, some new results are obtained. At last, some examples are given to illustrate the theory.
引用
收藏
页码:379 / 397
页数:18
相关论文
共 50 条