A Class of Nonlocal Impulsive Problems for Integrodifferential Equations in Banach Spaces

被引:0
|
作者
JinRong Wang
W. Wei
机构
[1] Guizhou University,College of Science of Guizhou University
来源
Results in Mathematics | 2010年 / 58卷
关键词
34K30; 34G20; 34A60; Integrodifferential equations; nonlocal conditions; impulsive conditions; fixed point theorem; existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and uniqueness of the PC-mild solution for a class of nonlinear integrodifferential impulsive differential equations with nonlocal conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l} x'(t)=Ax(t)+f\left(t,x(t), \int_{0}^{t}k(t,s,x(s))ds\right), \quad t\in J=[0,b], \,\, t\neq t_{i},\\ x(0)=g(x)+x_{0},\\ \Delta x(t_{i})=I_{i}(x(t_{i})), \quad i=1,2,\ldots,p, \,\, 0=t_{0} < t_{1} < \cdots < t_{p} < t_{p+1}=b.\end{array} \right.$$\end{document}Using the generalized Ascoli-Arzela theorem given by us, some fixed point technique including Schaefer fixed point theorem and Krasnoselskii fixed point theorem, and theory of operators semigroup, some new results are obtained. At last, some examples are given to illustrate the theory.
引用
收藏
页码:379 / 397
页数:18
相关论文
共 50 条
  • [1] A Class of Nonlocal Impulsive Problems for Integrodifferential Equations in Banach Spaces
    Wang, JinRong
    Wei, W.
    [J]. RESULTS IN MATHEMATICS, 2010, 58 (3-4) : 379 - 397
  • [2] NONLOCAL PROBLEMS FOR DELAY INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
    Yan, Zuomao
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (01): : 15 - 25
  • [3] ON THE EXISTENCE OF MILD SOLUTIONS FOR NONLOCAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
    Dieye, M.
    Diop, M. A.
    Ezzinbi, K.
    Hmoyed, H.
    [J]. MATEMATICHE, 2019, 74 (01): : 13 - 34
  • [4] A class of nth-order impulsive integrodifferential equations in Banach spaces
    Guo, DJ
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1339 - 1356
  • [5] Nonlocal controllability of integrodifferential equations in Banach spaces
    Balasubramaniam, P.
    Loganathan, C.
    [J]. Advances in modelling and analysis. A, general mathematical and computer tools, 2000, 37 (1-2): : 51 - 59
  • [6] QUASILINEAR NONLOCAL INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
    Dong, Qixiang
    Li, Gang
    Zhang, Jin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [7] Nonlocal impulsive problems for nonlinear differential equations in Banach spaces
    Liang, Jin
    Liu, James H.
    Xiao, Ti-Jun
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 798 - 804
  • [8] Existence of Mild and Classical Solutions for Nonlocal Impulsive Integrodifferential Equations in Banach Spaces with Measure of Noncompactness
    Karthikeyan, K.
    Anguraj, A.
    Malar, K.
    Trujillo, Juan J.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 2014
  • [9] Existence results for fractional impulsive integrodifferential equations in Banach spaces
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1970 - 1977
  • [10] Existence of Solutions for Fractional Impulsive Integrodifferential Equations in Banach Spaces
    Gou, Haide
    Li, Baolin
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016