Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte

被引:0
|
作者
Maelenn Chevreuil
Didier Law-Hine
Jingzhi Chen
Stéphane Bressanelli
Sophie Combet
Doru Constantin
Jéril Degrouard
Johannes Möller
Mehdi Zeghal
Guillaume Tresset
机构
[1] Université Paris-Saclay,Laboratoire de Physique des Solides, CNRS, Univ. Paris
[2] Université Paris-Saclay,Sud
[3] Université Paris-Saclay,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris
[4] CEA-Saclay,Sud
[5] European Synchrotron Radiation Facility (ESRF),Laboratoire Léon Brillouin (LLB), UMR 12 CEA
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The survival of viruses partly relies on their ability to self-assemble inside host cells. Although coarse-grained simulations have identified different pathways leading to assembled virions from their components, experimental evidence is severely lacking. Here, we use time-resolved small-angle X-ray scattering to uncover the nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging their full RNA genome. We reveal the formation of amorphous complexes via an en masse pathway and their relaxation into virions via a synchronous pathway. The binding energy of capsid subunits on the genome is moderate (~7kBT0, with kB the Boltzmann constant and T0 = 298 K, the room temperature), while the energy barrier separating the complexes and the virions is high (~ 20kBT0). A synthetic polyelectrolyte can lower this barrier so that filled capsids are formed in conditions where virions cannot build up. We propose a representation of the dynamics on a free energy landscape.
引用
收藏
相关论文
共 50 条
  • [41] Giant capsids from lattice self-assembly of cyclodextrin complexes
    Yang, Shenyu
    Yan, Yun
    Huang, Jianbin
    Petukhov, Andrei V.
    Kroon-Batenburg, Loes M. J.
    Drechsler, Markus
    Zhou, Chengcheng
    Tu, Mei
    Granick, Steve
    Jiang, Lingxiang
    NATURE COMMUNICATIONS, 2017, 8
  • [42] Assembly of a Genome Packaging Motor on Viral DNA Influences Packaging Mechanism
    Andrews, Benjamin T.
    Catalano, Carlos E.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 642A - 642A
  • [43] Viral self-assembly as a thermodynamic process
    Bruinsma, RF
    Gelbart, WM
    Reguera, D
    Rudnick, J
    Zandi, R
    PHYSICAL REVIEW LETTERS, 2003, 90 (24) : 1 - 248101
  • [44] Electrostatic theory of viral self-assembly
    Hu, Tao
    Zhang, Rui
    Shkovskii, B. I.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (12) : 3059 - 3064
  • [45] DNA packaging via combinative self-assembly
    Haley, Jennifer
    Li, Xiaolin
    Marshall, Nicholas
    Locklin, Jason
    Geng, Yan
    MOLECULAR BIOSYSTEMS, 2008, 4 (06) : 515 - 517
  • [46] Self-assembly for microscale and nanoscale packaging: Steps toward self-packaging
    Morris, CJ
    Stauth, SA
    Parviz, BA
    IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2005, 28 (04): : 600 - 611
  • [47] The dynamics of nanowire self-assembly
    Chen, M
    Searson, PC
    ADVANCED MATERIALS, 2005, 17 (22) : 2765 - +
  • [48] Self-Assembly and Dynamics of Polypeptides
    Floudas, George
    Spiess, Hans Wolfgang
    MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (4-5) : 278 - 298
  • [49] The dynamics of nacre self-assembly
    Cartwright, Julyan H. E.
    Checa, Antonio G.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (14) : 491 - 504
  • [50] IONIC SELF-ASSEMBLY AND HUMIDITY SENSITIVITY OF POLYELECTROLYTE MULTILAYERS
    余海湖
    Chinese Journal of Polymer Science, 2002, (01) : 1 - 7