Discrete Symmetries of the n-Wave Problem

被引:0
|
作者
A. N. Leznov
机构
[1] Universidad Autonóma del Estado de Morelos,
[2] CCICAp,undefined
[3] Institute for High Energy Physics,undefined
[4] Joint Institute for Nuclear Research,undefined
来源
关键词
integrable mappings and chains; discrete transformations; Darboux transformation; higher-dimensional integrable systems;
D O I
暂无
中图分类号
学科分类号
摘要
We show that discrete symmetries T of multicomponent integrable systems have a fine structure and can be represented as products of positive integer powers of pairwise commuting basis discrete transformations Ti. The calculations are completed for the n-wave problem.
引用
收藏
页码:955 / 969
页数:14
相关论文
共 50 条
  • [21] The Strong CP Problem and Discrete Symmetries
    Spinrath, Martin
    MASSIVE NEUTRINOS: FLAVOR MIXING OF LEPTONS AND NEUTRINO OSCILLATIONS, 2016, 25 : 105 - 114
  • [22] The strong CP problem and discrete symmetries
    Spinrath, Martin
    MODERN PHYSICS LETTERS A, 2015, 30 (19)
  • [23] Nondiffracting array generation using an N-wave interferometer
    Guérineau, Nicolas
    Primot, Jérôme
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16 (02): : 293 - 298
  • [24] Binary Darboux transformations and N-wave systems in rings
    Leble, SB
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) : 200 - 210
  • [25] Boundary value problems for the N-wave interaction equations
    Pelloni, B.
    Pinotsis, D. A.
    PHYSICS LETTERS A, 2009, 373 (22) : 1940 - 1950
  • [26] Nondiffracting array generation using an N-wave interferometer
    Guerineau, N
    Primot, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (02): : 293 - 298
  • [27] Higher-order solitons in the N-wave system
    Shchesnovich, VS
    Yang, JK
    STUDIES IN APPLIED MATHEMATICS, 2003, 110 (04) : 297 - 332
  • [28] On integration of a multidimensional version of n-wave type equation
    Zenchuk, A. I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [29] Exact N-wave solutions of generalized Burgers equations
    Sachdev, PL
    Joseph, KT
    Vaganan, BM
    STUDIES IN APPLIED MATHEMATICS, 1996, 97 (04) : 349 - 367
  • [30] SUBJECTIVE LOUDNESS OF N-WAVE SONIC-BOOMS
    NIEDZWIECKI, A
    RIBNER, HS
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1978, 64 (06): : 1617 - 1621