In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering

被引:0
|
作者
Edney P. e Silva
Boyang Huang
Júlia V. Helaehil
Paulo R. L. Nalesso
Leonardo Bagne
Maraiara A. de Oliveira
Gabriela C. C. Albiazetti
Ali Aldalbahi
Mohamed El-Newehy
Milton Santamaria-Jr
Fernanda A. S. Mendonça
Paulo Bártolo
Guilherme F. Caetano
机构
[1] University Center of Hermínio Ometto Foundation-FHO,Postgraduate Program in Biomedical Sciences
[2] University of Manchester,Department of Mechanical, Aerospace and Civil Engineering, School of Engineering
[3] King Saud University,King Abdullah Institute for Nanotechnology
来源
关键词
Additive manufacturing; Bone regeneration; Bone remodeling; Carbon nanotube; Conductive scaffolds; Electrical stimulation;
D O I
暂无
中图分类号
学科分类号
摘要
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.
引用
收藏
页码:190 / 202
页数:12
相关论文
共 50 条
  • [31] 3D-Printed PCL Scaffolds Combined with Juglone for Skin Tissue Engineering
    Ayran, Musa
    Dirican, Akif Yahya
    Saatcioglu, Elif
    Ulag, Songul
    Sahin, Ali
    Aksu, Burak
    Croitoru, Alexa-Maria
    Ficai, Denisa
    Gunduz, Oguzhan
    Ficai, Anton
    BIOENGINEERING-BASEL, 2022, 9 (09):
  • [32] Applications of nanotechnology in 3D printed tissue engineering scaffolds
    Laird, Noah Z.
    Acri, Timothy M.
    Chakka, Jaidev L.
    Quarterman, Juliana C.
    Malkawi, Walla, I
    Elangovan, Satheesh
    Salem, Aliasger K.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2021, 161 : 15 - 28
  • [33] On 3D printed scaffolds for orthopedic tissue engineering applications
    Nishant Ranjan
    Rupinder Singh
    I. P. S. Ahuja
    Ranvijay Kumar
    Jatenderpal Singh
    Anita K. Verma
    Ankita Leekha
    SN Applied Sciences, 2020, 2
  • [34] On 3D printed scaffolds for orthopedic tissue engineering applications
    Ranjan, Nishant
    Singh, Rupinder
    Ahuja, I. P. S.
    Kumar, Ranvijay
    Singh, Jatenderpal
    Verma, Anita K.
    Leekha, Ankita
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [35] 3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study
    Kara, Aylin
    Distler, Thomas
    Polley, Christian
    Schneidereit, Dominik
    Seitz, Hermann
    Friedrich, Oliver
    Tihminlioglu, Funda
    Boccaccini, Aldo R.
    MATERIALS TODAY BIO, 2022, 15
  • [36] 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration
    Dixon, Damion T.
    Gomillion, Cheryl T.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (07) : 1351 - 1364
  • [37] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [38] Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering
    Gupta, Deepak
    Singh, Atul Kumar
    Bellare, Jayesh
    BIOMEDICAL MATERIALS, 2023, 18 (06)
  • [39] Tantalum Nanoparticles Reinforced PCL Scaffolds Using Direct 3D Printing for Bone Tissue Engineering
    Xiong, Zixuan
    Liu, Wenbin
    Qian, Hu
    Lei, Ting
    He, Xi
    Hu, Yihe
    Lei, Pengfei
    FRONTIERS IN MATERIALS, 2021, 8
  • [40] Fabrication and In Vitro Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering
    Tang, Xiongfeng
    Qin, Yanguo
    Xu, Xinyu
    Guo, Deming
    Ye, Wenli
    Wu, Wenzheng
    Li, Ruiyan
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019