We provide the first unbiased evidence for a higher-order topological Mott insulator in three dimensions by numerically exact quantum Monte Carlo simulations. This insulating phase is adiabatically connected to a third-order topological insulator in the noninteracting limit, which features gapless modes around the corners of the pyrochlore lattice and is characterized by a Z4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Z}}_{4}$$\end{document} spin-Berry phase. The difference between the correlated and non-correlated topological phases is that in the former phase the gapless corner modes emerge only in spin excitations being Mott-like. We also show that the topological phase transition from the third-order topological Mott insulator to the usual Mott insulator occurs when the bulk spin gap solely closes.
机构:
Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
Univ New South Wales, Australian Res Council, Ctr Excellence Future Low Energy Elect Technol, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch Phys, Sydney, NSW 2052, Australia