Life cycle assessment of biodiesel fuel production from waste cooking oil in Okayama City

被引:0
|
作者
Jinmei Yang
Takeshi Fujiwara
Qijin Geng
机构
[1] Weifang University,College of Chemistry Chemical and Environmental Engineering
[2] Okayama University,Solid Waste Management Research Center
来源
Journal of Material Cycles and Waste Management | 2017年 / 19卷
关键词
Biodiesel fuel; Waste cooking oil; Life cycle assessment; Life cycle impact assessment; Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
A life cycle assessment (LCA) is performed to make clear of the actual environment impacts from conversation of waste cooking oil (WCO) to biodiesel fuel (BDF) in Okayama. A scenario analysis is carried out based on different participation rate of residents who separate WCO from general waste, corresponding to different BDF utilisation rate in transportation system. Sub scenarios complying with different gas emission standards regarding vehicles are designed as well. Afterwards, life cycle impact assessment is conducted to focus on global warming, acidification, and urban air pollution. Overall improvement of almost all kinds of life cycle inventories is significant when diesel is replaced with BDF, demonstrating that a shift from WCO-to-incineration to WCO-to-BDF is more beneficial. Under carbon neutral, compared to base scenario (S0), about 746.05 ton CO2 emission will be reduced annually in the scenario with 100 % BDF utilisation in vehicles (S4). Meanwhile, total external cost in three environmental impacts (EI) sharply reduces by 51.90 %, showing much economic sustainability in S4. Moreover, the manufacturing cost for producing one litter WCO-to-BDF is 97.32 Yen. Sensitivity analysis shows that the gas emission standard regarding vehicles had much bigger effect on EI than BDF manufacturing process in this research.
引用
收藏
页码:1457 / 1467
页数:10
相关论文
共 50 条
  • [31] Biodiesel production from waste cooking oil: A brief review
    Suzihaque, M. U. H.
    Alwi, Habsah
    Ibrahim, Ummi Kalthum
    Abdullah, Sureena
    Haron, Normah
    MATERIALS TODAY-PROCEEDINGS, 2022, 63 : S490 - S495
  • [32] Metakaolinite as a catalyst for biodiesel production from waste cooking oil
    Jorge Ramirez-Ortiz
    Merced Martinez
    Horacio Flores
    Frontiers of Chemical Science and Engineering, 2012, 6 (4) : 403 - 409
  • [33] Biodiesel production from waste cooking oil using a microwave
    不详
    INTERNATIONAL SUGAR JOURNAL, 2016, 118 (1410): : 405 - 405
  • [34] Electrohydrodynamic processing in biodiesel production from waste cooking oil
    Wilkanowicz, S. I.
    Kao, P. -K.
    Saud, K. T.
    Wilinska, I.
    Ciesinska, W.
    FUEL, 2024, 373
  • [35] Pilot Plant of Biodiesel Production from Waste Cooking Oil
    Liu Guangrui
    Chen Guanyi
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 687 - 692
  • [36] Economic analysis of biodiesel production from waste cooking oil
    Avinash, A.
    Murugesan, A.
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2017, 12 (10) : 890 - 894
  • [37] Biodiesel production from waste cooking oil in a microtube reactor
    Tanawannapong, Yuttapong
    Kaewchada, Amaraporn
    Jaree, Attasak
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (01) : 37 - 41
  • [38] Characterization of Waste Cooking Oil for Biodiesel Production
    Alias, Nur Imamelisa
    JayaKumar, Javendra Kumar A. L.
    Zain, Shahrom Md
    JURNAL KEJURUTERAAN, 2018, 1 (02): : 79 - 83
  • [39] Comparative life cycle assessment of diesel production from crude palm oil and waste cooking oil via pyrolysis
    Intarapong, Pisitpong
    Papong, Seksan
    Malakul, Pomthong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (05) : 702 - 713
  • [40] Thermodynamic assessment and production process optimisation of waste cooking oil for sustainable biodiesel production
    Khan, Md Nazeem
    Zunaid, Mohammad
    Pal, Amit
    INTERNATIONAL JOURNAL OF EXERGY, 2024, 45 (1-2) : 94 - 108