Performance Enhancement of Dynamic Spectrum Access via Channel Reservation for Cognitive Radio Networks

被引:0
|
作者
Nehal M. El Azaly
Ehab F. Badran
机构
[1] Pharos University,Basic Sciences Engineering Department
[2] Arab Academy for Science,Department of Electronics and Communications Engineering, College of Engineering and Technology
[3] Technology,undefined
[4] and Maritime Transport,undefined
来源
关键词
Cognitive radio networks; Dynamic spectrum access; Channel reservation; Optimal number of reservation channels; Number of channel switching;
D O I
暂无
中图分类号
学科分类号
摘要
In cognitive radio networks models, quality of service (QoS) of primary users (PUs) must be assured. Dynamic spectrum access is a paradigm by which a radio system adjusts dynamically the use of convenient spectrum holes. In this paper, a secondary user reserved channel (SU-RC) model is proposed. SU-RC model introduces the use of a new SU reserved channel infrastructure to enhance QoS of SUs. Furthermore, SU-RC improves the efficiency of network by reducing the blocking probability and the forced termination probability of SUs. The proposed algorithm is significantly adaptable by deducing the optimal number of reservation channels. A reasonable balance between the success probability of channel selection and average number of channel switching is accomplished. Furthermore, this algorithm demonstrates the impact of PU’s interference either behind or inside influenced region on SUs. Simulation results show that, by applying the SU-RC algorithm with a preferable number of reservation channels, the number of channel switching is still very close to that of the network without external SU-reserved channel. For example, for the case if SU is inside the PU’s influenced region, when λp=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{p } = 20$$\end{document}, Pf=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{f} = 0.05$$\end{document} has constant the optimal number of reservation channels nopt=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{opt } = 2$$\end{document} for both cases either with or without the existence of reserved channel. Furthermore, since λp=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{p } = 10$$\end{document}, Pm=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{m} = 0.05$$\end{document}, the average number of channel switching S¯t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{ S} \left( t \right)$$\end{document} is equal to 1.005 in case of without existence of the external reserved channel whereas S¯t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{ S} \left( t \right)$$\end{document} is approximate 1.0275 which is regarded an in considerable increase of S¯t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{ S} \left( t \right)$$\end{document} is about 0.0225.
引用
收藏
页码:2867 / 2883
页数:16
相关论文
共 50 条
  • [31] Performance Analysis of the Spectrum Access Strategies in Cognitive Radio Networks
    Kumar, Bhoopendra
    Dhurandher, Sanjay Kumar
    Obaidat, Mohammad S.
    [J]. PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION, AND TELECOMMUNICATION SYSTEMS (IEEE CITS 2021), 2021, : 80 - 84
  • [32] Enhanced Spectrum Sensing Techniques for Dynamic Spectrum Access Cognitive Radio Networks
    Boyd, Steven W.
    Pursley, Michael B.
    [J]. MILITARY COMMUNICATIONS CONFERENCE, 2010 (MILCOM 2010), 2010, : 317 - 322
  • [33] Spectrum Monitoring During Reception in Dynamic Spectrum Access Cognitive Radio Networks
    Boyd, Steven W.
    Frye, J. Michael
    Pursley, Michael B.
    Royster, Thomas C.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (02) : 547 - 558
  • [34] Joint Design of Spectrum Sensing and Channel Access in Cognitive Radio Networks
    El-Sherif, Amr A.
    Liu, K. J. Ray
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2011, 10 (06) : 1743 - 1753
  • [35] Opportunistic Spectrum Access with Two Channel Sensing in Cognitive Radio Networks
    Lai, Jin
    Dutkiewicz, Eryk
    Liu, Ren Ping
    Vesilo, Rein
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2015, 14 (01) : 126 - 138
  • [36] Enhanced Dynamic Spectrum Access in Multiband Cognitive Radio Networks via Optimized Resource Allocation
    Bhardwaj, Piyush
    Panwar, Ankita
    Ozdemir, Onur
    Masazade, Engin
    Kasperovich, Irina
    Drozd, Andrew L.
    Mohan, Chilukuri K.
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (12) : 8093 - 8106
  • [37] Spectrum Sensing Optimization and Performance Enhancement of Cognitive Radio Networks
    Mostafa Emara
    Hanaa S. Ali
    Salah Eldeen A. Khamis
    Fathi E. Abd El-Samie
    [J]. Wireless Personal Communications, 2016, 86 : 925 - 941
  • [38] Opportunistic Spectrum Access with Channel Switching Cost for Cognitive Radio Networks
    Chen, Lin
    Iellamo, Stefano
    Coupechoux, Marceau
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [39] Spectrum Sensing Optimization and Performance Enhancement of Cognitive Radio Networks
    Emara, Mostafa
    Ali, Hanaa S.
    Khamis, Salah Eldeen A.
    Abd El-Samie, Fathi E.
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2016, 86 (02) : 925 - 941
  • [40] Dynamic Spectrum Access in Cognitive Radio
    Tabakovic, Zeljko
    Grgic, Sonja
    Grgic, Mislav
    [J]. PROCEEDINGS ELMAR-2009, 2009, : 245 - 248