Training set optimization under population structure in genomic selection

被引:0
|
作者
Julio Isidro
Jean-Luc Jannink
Deniz Akdemir
Jesse Poland
Nicolas Heslot
Mark E. Sorrells
机构
[1] Cornell University,Hard Winter Wheat Genetics Research Unit, USDA
[2] Kansas State University,ARS and Department of Agronomy
[3] Limagrain Europe,undefined
[4] CS3911,undefined
来源
关键词
Genomic Selection; Test Weight; Genomic Prediction; Linear Unbiased Prediction; Genomic Relationship Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:145 / 158
页数:13
相关论文
共 50 条
  • [31] Imbalanced Training Set Reduction and Feature Selection Through Genetic Optimization
    Barandela, R.
    Hernandez, J. K.
    Sanchez, J. S.
    Ferri, F. J.
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2005, 131 : 215 - 222
  • [32] Population structure correction for genomic selection through eigenvector covariates
    Azevedo, Camila Ferreira
    Vilela de Resende, Marcos Deon
    Fonseca e Silva, Fabyano
    Nascimento, Moyses
    Soriano Viana, Jose Marcelo
    Ferreira Valente, Magno Savio
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2017, 17 (04): : 350 - 358
  • [33] The Impact of Genomic Selection on Canadian Holstein Cattle Population Structure
    Obari, Christiana O.
    Rochus, Christina M.
    Schenkel, Flavio S.
    Miglior, Filippo
    Baes, Christine F.
    JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 207 - 207
  • [34] The Impact of Genomic Selection on Canadian Holstein Cattle Population Structure
    Obari, Christiana O.
    Rochus, Christina M.
    Schenkel, Flavio S.
    Miglior, Filippo
    Baes, Christine F.
    JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 207 - 207
  • [35] Training population optimization for genomic selection improves the predictive ability of a costly measure in bread wheat, the gliadin to glutenin ratio
    Lemeunier, Pierre
    Paux, Etienne
    Babi, Selver
    Auzanneau, Jerome
    Goudemand-Dugue, Ellen
    Ravel, Catherine
    Rincent, Renaud
    EUPHYTICA, 2022, 218 (08)
  • [36] Training population optimization for genomic selection improves the predictive ability of a costly measure in bread wheat, the gliadin to glutenin ratio
    Pierre Lemeunier
    Etienne Paux
    Selver Babi
    Jérôme Auzanneau
    Ellen Goudemand-Dugué
    Catherine Ravel
    Renaud Rincent
    Euphytica, 2022, 218
  • [37] Population Structure in a Comprehensive Genomic Data Set on Human Microsatellite Variation
    Pemberton, Trevor J.
    DeGiorgio, Michael
    Rosenberg, Noah A.
    G3-GENES GENOMES GENETICS, 2013, 3 (05): : 891 - 907
  • [38] Comparison of BLUP and Bayesian methods for different sizes of training population in genomic selection
    Abaci, Samet Hasan
    Onder, Hasan
    TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES, 2020, 44 (05): : 994 - 1002
  • [39] The Value of Expanding the Training Population to Improve Genomic Selection Models in Tetraploid Potato
    Sverrisdottir, Elsa
    Sundmark, Ea Hoegh Riis
    Johnsen, Heidi Ollegaard
    Kirk, Hanne Grethe
    Asp, Torben
    Janss, Luc
    Bryan, Glenn
    Nielsen, Kare Lehmann
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [40] Adaptive Genetic Algorithm for Reliable Training Population in Plant Breeding Genomic Selection
    Purbarani, Sumarsih C.
    Wasito, Ito
    Kusuma, Ilham
    2016 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2016, : 556 - 561