Flame synthesis of Fe3O4/Fe2O3 on stainless steel grid surfaces to improve anodic electrochemical properties

被引:0
|
作者
S Silva-Martínez
C A Pineda-Arellano
R López-Sesenes
J G González-Rodriguez
M L Alvarez-Benítes
A Alvarez-Gallegos
机构
[1] Universidad Autónoma del Estado de Morelos,Centro de Investigación en Ingeniería y Ciencias Aplicadas
[2] Conacyt-Centro de Investigaciones en Óptica,Facultad de Ciencias Químicas e Ingeniería
[3] Universidad Autónoma del Estado de Morelos,undefined
[4] Instituto Tecnológico de Zacatepec,undefined
关键词
Iron oxides; scalable anode; stainless steel; surface modification;
D O I
暂无
中图分类号
学科分类号
摘要
Stainless steel (SS) is attractive, easy to handle, cost-effective and offers several advantages (i.e., conductivity, durability, commercial availability) to make anodes. However, the presence of some iron oxides (mainly Fe2O3) on the SS surface improves electron transfer for potential use as an anode in sediment microbial fuel cells. Although several procedures are available to synthesize Fe2O3 on SS surfaces, most of them involve several careful steps, taking time (several hours or days) from start to finish. Fortunately, iron oxides can be synthesized on the SS surface quickly and very easily. Flame synthesis of iron oxides is a straightforward process, and it can be scalable. Using this procedure, two types of SS-grids 304 (wire diameters of 100 μm and 230 μm) material acquired from a common hardware store were flamed, forming Fe2O3 on their surface. Under different conditions (polished, polished then flamed, flamed) SS-grid (SSg) specimens were studied. All specimen surfaces were characterized by field emission scanning electron microscopy combined with X-rays chemical analysis. The chemical information of the iron oxides formed on the surface was obtained by X-ray diffractometer. The electrochemical responses of modified SSg pieces were assessed by cyclic voltammetry, and finally, their resistances were assessed by electrochemical impedance spectroscopy. An equivalent circuit was included to describe the electrode–electrolyte interface. The best electroactive area with small resistance in the electrode–electrolyte interface corresponds to the flamed SS grid (wire diameters of 100 mm).
引用
收藏
相关论文
共 50 条
  • [41] A solvothermal transformation of α-Fe2O3 nanocrystals to Fe3O4 polyhedrons
    Chen, Liqiao
    Xiong, Qingfeng
    Li, Wenlin
    Li, Junpeng
    Yu, Xuan
    CRYSTENGCOMM, 2015, 17 (45): : 8602 - 8606
  • [42] The Fe3O4 origin of the "Biphase" reconstruction on α-Fe2O3(0001)
    Lanier, Courtney H.
    Chiaramonti, Ann N.
    Marks, Laurence D.
    Poeppelmeier, Kenneth R.
    SURFACE SCIENCE, 2009, 603 (16) : 2574 - 2579
  • [43] Equilibrium relationships of Fe3O4, Fe2O3, and oxygen.
    Greig, JW
    Posnjak, E
    Merwin, HE
    Sosman, RB
    AMERICAN JOURNAL OF SCIENCE, 1935, 30 (177) : 239 - 316
  • [44] REDUCTION KINETICS OF FE2O3 IN FE3O4 AT LOW TEMPERATURES
    DOBOVISE.B
    KOROUSIC, B
    MINING AND METALLURGY QUARTERLY, 1968, (02): : 15 - &
  • [45] Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals
    Recnik, Aleksander
    Nyiro-Kosa, Ilona
    Dodony, Istvan
    Posfai, Mihaly
    CRYSTENGCOMM, 2013, 15 (37): : 7539 - 7547
  • [46] Synthesis, characterization and electrochemical properties of magnetite (Fe3O4)
    Zhu, Shali
    Marschilok, Amy C.
    Takeuchi, Esther S.
    Takeuchi, Kenneth J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [47] Fe3O4 nanomaterials: synthesis, optical and electrochemical properties
    Amaini Chouchaine
    Salah Kouass
    Fathi Touati
    Noureddine Amdouni
    Hassouna Dhaouadi
    Journal of the Australian Ceramic Society, 2021, 57 : 469 - 477
  • [48] Fe3O4 nanomaterials: synthesis, optical and electrochemical properties
    Chouchaine, Amaini
    Kouass, Salah
    Touati, Fathi
    Amdouni, Noureddine
    Dhaouadi, Hassouna
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2021, 57 (02) : 469 - 477
  • [49] Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles
    Juliano Toniolo
    Antonio S. Takimi
    Mônica J. Andrade
    Renato Bonadiman
    Carlos P. Bergmann
    Journal of Materials Science, 2007, 42 : 4785 - 4791
  • [50] Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles
    Toniolo, Juliano
    Takimi, Antonio S.
    Andrade, Monica J.
    Bonadiman, Renato
    Bergmann, Carlos P.
    JOURNAL OF MATERIALS SCIENCE, 2007, 42 (13) : 4785 - 4791