Flame synthesis of Fe3O4/Fe2O3 on stainless steel grid surfaces to improve anodic electrochemical properties

被引:0
|
作者
S Silva-Martínez
C A Pineda-Arellano
R López-Sesenes
J G González-Rodriguez
M L Alvarez-Benítes
A Alvarez-Gallegos
机构
[1] Universidad Autónoma del Estado de Morelos,Centro de Investigación en Ingeniería y Ciencias Aplicadas
[2] Conacyt-Centro de Investigaciones en Óptica,Facultad de Ciencias Químicas e Ingeniería
[3] Universidad Autónoma del Estado de Morelos,undefined
[4] Instituto Tecnológico de Zacatepec,undefined
关键词
Iron oxides; scalable anode; stainless steel; surface modification;
D O I
暂无
中图分类号
学科分类号
摘要
Stainless steel (SS) is attractive, easy to handle, cost-effective and offers several advantages (i.e., conductivity, durability, commercial availability) to make anodes. However, the presence of some iron oxides (mainly Fe2O3) on the SS surface improves electron transfer for potential use as an anode in sediment microbial fuel cells. Although several procedures are available to synthesize Fe2O3 on SS surfaces, most of them involve several careful steps, taking time (several hours or days) from start to finish. Fortunately, iron oxides can be synthesized on the SS surface quickly and very easily. Flame synthesis of iron oxides is a straightforward process, and it can be scalable. Using this procedure, two types of SS-grids 304 (wire diameters of 100 μm and 230 μm) material acquired from a common hardware store were flamed, forming Fe2O3 on their surface. Under different conditions (polished, polished then flamed, flamed) SS-grid (SSg) specimens were studied. All specimen surfaces were characterized by field emission scanning electron microscopy combined with X-rays chemical analysis. The chemical information of the iron oxides formed on the surface was obtained by X-ray diffractometer. The electrochemical responses of modified SSg pieces were assessed by cyclic voltammetry, and finally, their resistances were assessed by electrochemical impedance spectroscopy. An equivalent circuit was included to describe the electrode–electrolyte interface. The best electroactive area with small resistance in the electrode–electrolyte interface corresponds to the flamed SS grid (wire diameters of 100 mm).
引用
收藏
相关论文
共 50 条
  • [1] Flame synthesis of Fe3O4/Fe2O3 on stainless steel grid surfaces to improve anodic electrochemical properties
    Silva-Martinez, S.
    Pineda-Arellano, C. A.
    Lopez-Sesenes, R.
    Gonzalez-Rodriguez, J. G.
    Alvarez-Benites, M. L.
    Alvarez-Gallegos, A.
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (04)
  • [2] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [3] Synthesis of Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    PAN Lu
    TANG Jing
    CHEN YongHong
    Science China(Chemistry), 2013, 56 (03) : 362 - 369
  • [4] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Lu Pan
    Jing Tang
    YongHong Chen
    Science China Chemistry, 2013, 56 : 362 - 369
  • [5] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [6] The synthesis and electrochemical performance of α-Fe2O3/ Fe3O4 composite anode electrodes
    Shi, Lei
    Liu, Hong-Bo
    He, Yue-De
    Hong, Quan
    Yang, Li
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (01): : 177 - 180
  • [7] Molten synthesis of ZnO•Fe3O4 and Fe2O3 and its electrochemical performance
    Reddy, M. V.
    Cherian, Christie Thomas
    Ramanathan, Kannan
    Jie, Kevin Chee Wei
    Daryl, Tew You Wen
    Hao, Tan Yi
    Adams, S.
    Loh, K. P.
    Chowdari, B. V. R.
    ELECTROCHIMICA ACTA, 2014, 118 : 75 - 80
  • [8] Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles
    Spencer, Elinor C.
    Ross, Nancy L.
    Olsen, Rebecca E.
    Huang, Baiyu
    Kolesnikov, Alexander I.
    Woodfield, Brian F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9609 - 9616
  • [9] Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method
    Mohanraj, Kannusamy
    Sivakumar, Ganesan
    SAINS MALAYSIANA, 2017, 46 (10): : 1935 - 1942
  • [10] Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and α-Fe2O3 nanocrystals
    Zhou, Xi
    Shi, Yanfeng
    Ren, Lei
    Bao, Shixiong
    Han, Yu
    Wu, Shichao
    Zhang, Honggang
    Zhong, Lubin
    Zhang, Qiqing
    JOURNAL OF SOLID STATE CHEMISTRY, 2012, 196 : 138 - 144