The degree of downside risk aversion (or equivalently prudence) is so far usually measured by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{-U^{\prime \prime \prime }}{U^{\prime \prime }}$\end{document}. We propose here another measure, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{U^{\prime \prime \prime }}{U^{\prime }}$\end{document}, which has specific and interesting local and global properties. Some of these properties are to a wide extent similar to those of the classical measure of absolute risk aversion, which is not always the case for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{ -U^{\prime \prime \prime }}{U^{\prime \prime }}$\end{document}. It also appears that the two measures are not mutually exclusive. Instead, they seem to be rather complementary as shown through an economic application dealing with a simple general equilibrium model of savings.