Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

被引:0
|
作者
Michael B. Giles
Desmond J. Higham
Xuerong Mao
机构
[1] University of Oxford,Mathematical Institute and Oxford
[2] University of Strathclyde,Man Institute of Quantitative Finance
[3] University of Strathclyde,Department of Mathematics
来源
Finance and Stochastics | 2009年 / 13卷
关键词
Barrier option; Complexity; Digital option; Euler–Maruyama; Lookback option; Path-dependent option; Statistical error; Strong error; Weak error; 65C05; 60H10; C15; C63;
D O I
暂无
中图分类号
学科分类号
摘要
Giles (Oper. Res. 56:607–617, 2008) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payoff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justified for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler–Maruyama method.
引用
收藏
页码:403 / 413
页数:10
相关论文
共 50 条
  • [21] Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers
    Sukys, Jonas
    Mishra, Siddhartha
    Schwab, Christoph
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2012, 7203 : 245 - 254
  • [22] Improved Library-Based Monte Carlo, Applied to Multi-Level Sampling
    Ding, Ying
    Mamonov, Artem B.
    Zuckerman, Daniel M.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 155 - 155
  • [23] A Multi-Level Monte Carlo FPGA Accelerator for Option Pricing in the Heston Model
    de Schryver, Christian
    Torruella, Pedro
    Wehn, Norbert
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 248 - 253
  • [24] Adaptive Load Balancing for Massively Parallel Multi-Level Monte Carlo Solvers
    Sukys, Jonas
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT I, 2014, 8384 : 47 - 56
  • [25] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Claude J. Gittelson
    Juho Könnö
    Christoph Schwab
    Rolf Stenberg
    Numerische Mathematik, 2013, 125 : 347 - 386
  • [26] UNBIASED MONTE CARLO FOR OPTIMIZATION AND FUNCTIONS OF EXPECTATIONS VIA MULTI-LEVEL RANDOMIZATION
    Blanchet, Jose H.
    Glynn, Peter W.
    2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 3656 - 3667
  • [27] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Gittelson, Claude J.
    Konno, Juho
    Schwab, Christoph
    Stenberg, Rolf
    NUMERISCHE MATHEMATIK, 2013, 125 (02) : 347 - 386
  • [28] Monte Carlo localization in outdoor terrains using multi-level surface maps
    Kuemmerle, Rainer
    Triebel, Rudolph
    Pfaff, Patrick
    Burgard, Wolfram
    FIELD AND SERVICE ROBOTICS: RESULTS OF THE 6TH INTERNATIONAL CONFERENCE, 2008, 42 : 213 - 222
  • [29] Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN
    Hickernell, Fred J.
    Mueller-Gronbach, Thomas
    Niu, Ben
    Ritter, Klaus
    JOURNAL OF COMPLEXITY, 2010, 26 (03) : 229 - 254
  • [30] Convergence Rates of Split-Step Theta Methods for SDEs with Non-Globally Lipschitz Diffusion Coefficients
    Wu, Xiaojuan
    Gan, Siqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022,