Trajectory controllability of a semilinear parabolic system

被引:0
|
作者
Ruchi Sandilya
Raju K. George
Sarvesh Kumar
机构
[1] Indian Institute of Space Science and Technology,Department of Mathematics
来源
The Journal of Analysis | 2020年 / 28卷
关键词
Trajectory controllability; Locally Lipschitz continuity; Discontinuous finite volume methods; Numerical experiments.; 93B; 35K; 65N;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces the trajectory controllability for a semilinear parabolic system in infinite dimensional space setting. Under suitable conditions the trajectory controllability of semilinear system has been established. Numerical experiments are conducted using backward Euler discontinuous finite volume methods with interpolated coefficients to approximate the semilinear system and to illustrate our theoretical results.
引用
收藏
页码:107 / 115
页数:8
相关论文
共 50 条
  • [31] STACKELBERG-NASH EXACT CONTROLLABILITY FOR LINEAR AND SEMILINEAR PARABOLIC EQUATIONS
    Araruna, F. D.
    Fernandez-Cara, E.
    Santos, M. C.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 835 - 856
  • [32] Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls
    Araruna, F. D.
    Fernandez-Cara, E.
    da Silva, L. C.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)
  • [33] Bilinear control for global controllability of the semilinear parabolic equations with superlinear terms
    Khapalov, A
    CONTROL OF NONLINEAR DISTRIBUTED PARAMETER SYSTEMS, 2001, 218 : 139 - 155
  • [34] Hierarchical null controllability of a semilinear degenerate parabolic equation with a gradient term
    Djomegne, Landry
    Kenne, Cyrille
    Dorville, Rene
    Zongo, Pascal
    OPTIMIZATION, 2024,
  • [36] Global Nonnegative Controllability of the 1-D Semilinear Parabolic Equation
    Khapalov, Alexander Y.
    CONTROLLABILITY OF PARTIAL DIFFERENTIAL EQUATIONS GOVERNED BY MULTIPLICATIVE CONTROLS, 2010, 1995 : 15 - 31
  • [37] Flatness-based trajectory planning for semilinear parabolic PDEs
    Schoerkhuber, B.
    Meurer, T.
    Juengel, A.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3538 - 3543
  • [38] IMPULSE TRAJECTORY AND FINAL CONTROLLABILITY OF PARABOLIC-HYPERBOLIC SYSTEMS
    Semenov, V. V.
    Denisov, S. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (03) : 417 - 427
  • [39] Impulse Trajectory and Final Controllability of Parabolic-Hyperbolic Systems*
    V. V. Semenov
    S. V. Denisov
    Cybernetics and Systems Analysis, 2023, 59 : 417 - 427
  • [40] A semilinear parabolic system with a free boundary
    Mingxin Wang
    Yonggang Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3309 - 3332