Quantile process for left truncated and right censored data

被引:0
|
作者
Szeman Tse
机构
[1] National Donghua University,Department of Applied Mathematics
关键词
Left truncation; right censorship; product-limit; quantile process; Gaussian approximations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the product-limit quantile estimator of an unknown quantile function when the data are subject to random left truncation and right censorship. This is a parallel problem to the estimation of the unknown distribution function by the product-limit estimator under the same model. Simultaneous strong Gaussian approximations of the product-limit process and product-limit quantile process are constructed with rate\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O(\frac{{(\log n)^{3/2} }}{{n^{1/8} }})$$ \end{document}. A functional law of the iterated logarithm for the maximal deviation of the estimator from the estimand is derived from the construction.
引用
收藏
页码:61 / 69
页数:8
相关论文
共 50 条
  • [21] Survival Forest for Left-Truncated Right-Censored Data
    Laurent, Vincent
    Van, Olivier Vo
    IMAGE PROCESSING ON LINE, 2024, 14 : 194 - 204
  • [22] Concordance indices with left-truncated and right-censored data
    Hartman, Nicholas
    Kim, Sehee
    He, Kevin
    Kalbfleisch, John D.
    BIOMETRICS, 2023, 79 (03) : 1624 - 1634
  • [23] Estimation with left-truncated and right censored data: A comparison study
    Ahmadi, Jafar
    Doostparast, Mahdi
    Parsian, Ahmad
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1391 - 1400
  • [24] Relative hazard rate estimation for right censored and left truncated data
    Ricardo Cao
    Paul Janssen
    Noël Veraverbeke
    Test, 2005, 14 : 257 - 280
  • [25] Variance of the bivariate density estimator for left truncated right censored data
    Prewitt, K
    Gürler, U
    STATISTICS & PROBABILITY LETTERS, 1999, 45 (04) : 351 - 358
  • [26] Relative hazard rate estimation for right censored and left truncated data
    Cao, R
    Janssen, P
    Veraverbeke, N
    TEST, 2005, 14 (01) : 257 - 280
  • [27] Left truncated and right censored Weibull data and likelihood inference with an illustration
    Balakrishnan, N.
    Mitra, Debanjan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4011 - 4025
  • [28] Conditional Quantile Estimation with Truncated, Censored and Dependent Data
    Liang, Hanying
    Li, Deli
    Miao, Tianxuan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 969 - 990
  • [29] Conditional Quantile Estimation with Truncated,Censored and Dependent Data
    Hanying LIANG
    Deli LI
    Tianxuan MIAO
    Chinese Annals of Mathematics(Series B), 2015, 36 (06) : 969 - 990
  • [30] Conditional quantile estimation with truncated, censored and dependent data
    Hanying Liang
    Deli Li
    Tianxuan Miao
    Chinese Annals of Mathematics, Series B, 2015, 36 : 969 - 990