Mathematical modeling of hemodynamic characteristics of pumps for pulsatile circulatory support systems

被引:2
|
作者
Belyaev L.V. [1 ]
Ivanchenko A.B. [1 ]
Zhdanov A.V. [1 ]
Morozov V.V. [1 ]
机构
[1] Vladimir State University, Vladimir
关键词
Circulatory Support; Flow Swirl; Blood Pump; Artificial Heart; Hemodynamic Characteristic;
D O I
10.1007/s10527-015-9489-7
中图分类号
学科分类号
摘要
An approach to designing blood pumps for pulsatile circulatory support systems based on numerical modeling of hemodynamic processes is presented. Additionally, the influence of the geometry of artificial heart valves and connecting sockets on hemodynamic processes occurring during the blood pump operation is studied. This approach to design of blood pumps of circulatory support systems is justified taking into account hemodynamic characteristics. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:24 / 28
页数:4
相关论文
共 50 条
  • [31] THE MATHEMATICAL-MODELING OF HYDROSTATIC PUMPS AND MOTORS
    MCCANDLISH, D
    DOREY, RE
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 1984, 198 (10) : 165 - 174
  • [32] EVALUATION OF THE EFFICIENCY OF A NEW PULSATILE FLOW-G ENERATING CIRCULATORY-ASSIST SYSTEM IN ROTARY BLOOD PUMPS. RESEARCH ON A MATHEMATICAL MODEL
    Itkin, G. P.
    Syrbu, A., I
    Kyleshov, A. P.
    Buchnev, A. S.
    Drobyshev, A. A.
    VESTNIK TRANSPLANTOLOGII I ISKUSSTVENNYH ORGANOV, 2021, 23 (04): : 73 - 78
  • [33] Hemodynamic Evaluation of an Intra-Atrial Blood Pump on a Pulsatile Mock Circulatory Loop
    Smith, P. Alex
    Wang, Yaxin
    Bieritz, Shelby A.
    Sampaio, Luiz C.
    Metcalfe, Ralph W.
    Cohn, William E.
    Frazier, O. H.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 4508 - 4511
  • [34] Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support
    Torre-Amione, Guillermo
    Southard, Robert E.
    Loebe, Matthias M.
    Youker, Keith A.
    Bruckner, Brian
    Estep, Jerry D.
    Tierney, Megan
    Noon, George P.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2010, 29 (02): : 195 - 200
  • [35] Mechanical circulatory support for terminal heart failure:: Experience with pulsatile and non-pulsatile flow devices
    Wilhelm, M. J.
    Lachat, M.
    Pretre, R.
    Schmid, E. R.
    Ruschitzka, F.
    Noll, G.
    Genoni, M.
    BRITISH JOURNAL OF SURGERY, 2007, 94 (06) : 784 - 784
  • [36] Comparative Analysis of von Willebrand Disease in Patients with Mechanical Circulatory Pulsatile and Non-Pulsatile Support
    Oezpeker, C.
    Bohms, B.
    Roefe, D.
    Boergermann, J.
    Ensminger, S.
    Gummert, J.
    Milting, H.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2013, 32 (04): : S71 - S72
  • [37] Mathematical modeling of fluid dynamics in pulsatile cardiopulmonary bypass
    Pennati, G
    Fiore, GB
    Laganà, K
    Fumero, R
    ARTIFICIAL ORGANS, 2004, 28 (02) : 196 - 209
  • [38] A mathematical modeling of pulsatile flow in carotid artery bifurcation
    Agarwal, Ruchi
    Katiyar, V. K.
    Pradhan, Prabhakar
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2008, 46 (11) : 1147 - 1156
  • [39] Comparative hemodynamic effects of percutaneously delivered circulatory support devices
    Kapur, N.
    Paruchuri, V. P.
    Pham, D. T.
    Salehi, H. R.
    Esposito, M. L.
    Schraufnagel, D.
    Murphy, B.
    Reyelt, L.
    Pandian, N.
    Karas, R. H.
    EUROPEAN HEART JOURNAL, 2013, 34 : 810 - 810
  • [40] Right-Sided Mechanical Circulatory Support – A Hemodynamic Perspective
    Fatimah A. Alkhunaizi
    Daniel Burkhoff
    Michael I. Brener
    Current Heart Failure Reports, 2022, 19 : 334 - 345