Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments

被引:0
|
作者
Katherine M. Manfred
Luca Ciaffoni
Grant A. D. Ritchie
机构
[1] University of Oxford,Department of Chemistry, Physical and Theoretical Chemistry Laboratory
来源
Applied Physics B | 2015年 / 120卷
关键词
Optical Cavity; Free Spectral Range; Feedback Rate; Cavity Transmission; Tuning Rate;
D O I
暂无
中图分类号
学科分类号
摘要
Optical-feedback cavity-enhanced absorption spectroscopy is a highly sensitive trace gas sensing technique that relies on feedback from a resonant intracavity field to successively lock the laser to the cavity as the wavelength is scanned across a molecular absorption with a comb of resonant frequencies. V-shaped optical cavities have been favoured in the past in order to avoid additional feedback fields from non-resonant reflections that potentially suppress the locking to the resonant cavity frequency. A model of the laser–cavity coupling demonstrates, however, that the laser can stably lock to a resonant linear cavity, within certain constraints on the relative intensity of the two feedback sources. By mode mismatching the field into the linear cavity, we have shown that it is theoretically and practically possible to spatially filter out the unwanted non-resonant component in order for the resonant field to dominate the feedback competition at the laser. A 5.3 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} cw quantum cascade laser scanning across a CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} absorption feature demonstrated stable locking to achieve a minimum detectable absorption coefficient of 2.7×10-9cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.7\,\times \,10^{-9}\,\hbox {cm}^{-1}$$\end{document} for 1-s averaging. Detailed investigations of feedback effects on the laser output verified the validity of our theoretical models.
引用
收藏
页码:329 / 339
页数:10
相关论文
共 50 条
  • [31] Asymmetric Etalon Effect in Fold-Type Optical Feedback Cavity-Enhanced Absorption Spectroscopy
    Wang, Yunzheng
    Guan, Shiyu
    Cao, Huilin
    Tan, Zhongqi
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [32] Cavity-enhanced absorption spectroscopy of molecular oxygen
    Gianfrani, L
    Fox, RW
    Hollberg, L
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (12) : 2247 - 2254
  • [33] Resonant cavity-enhanced absorption for optical refrigeration
    Seletskiy, D. V.
    Hasselbeck, M. P.
    Sheik-Bahae, M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (18)
  • [34] Optical feedback cavity enhanced absorption spectroscopy with diode lasers
    Baran, Stuart G.
    Hancock, Gus
    Peverall, Robert
    Ritchie, Grant A. D.
    van Leeuwen, Nicola J.
    [J]. ANALYST, 2009, 134 (02) : 243 - 249
  • [35] Mode-locked cavity-enhanced absorption spectroscopy
    Gherman, T
    Romanini, D
    [J]. OPTICS EXPRESS, 2002, 10 (19): : 1033 - 1042
  • [36] Cavity-enhanced absorption spectroscopy detects geothermal gases
    Rugani, Lauren
    [J]. PHOTONICS SPECTRA, 2007, 41 (01) : 127 - 127
  • [37] Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization
    Chao, Xing
    Shen, Guofeng
    Sun, Kai
    Wang, Zhenhai
    Meng, Qinghui
    Wang, Shengkai
    Hanson, Ronald K.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) : 1345 - 1353
  • [38] Monitoring ammonia through cavity-enhanced absorption spectroscopy
    Hu, Pengbing
    Chen, Zhemin
    Pan, Sunqiang
    Zhang, Jianfeng
    Chen, Ning
    He, Hong
    [J]. 2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [39] Cavity-enhanced absorption spectroscopy of methane at 1.73 μm
    Barry, HR
    Corner, L
    Hancock, G
    Peverall, R
    Ritchie, GAD
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 333 (3-4) : 285 - 289
  • [40] Cavity-enhanced absorption spectroscopy based on diode laser
    Pei, Shixin
    Cui, Fenping
    Zhan, Yu
    Li, Chuanqi
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2009, 29 (03): : 831 - 837