Naive automated machine learning

被引:0
|
作者
Felix Mohr
Marcel Wever
机构
[1] Universidad de La Sabana,
[2] Paderborn University,undefined
来源
Machine Learning | 2023年 / 112卷
关键词
Automated Machine Learning; Data Science; Black-Box Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
An essential task of automated machine learning (AutoML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AutoML}$$\end{document}) is the problem of automatically finding the pipeline with the best generalization performance on a given dataset. This problem has been addressed with sophisticated black-box\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {black-box}$$\end{document} optimization techniques such as Bayesian optimization, grammar-based genetic algorithms, and tree search algorithms. Most of the current approaches are motivated by the assumption that optimizing the components of a pipeline in isolation may yield sub-optimal results. We present Naive AutoML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Naive AutoML}$$\end{document}, an approach that precisely realizes such an in-isolation optimization of the different components of a pre-defined pipeline scheme. The returned pipeline is obtained by just taking the best algorithm of each slot. The isolated optimization leads to substantially reduced search spaces, and, surprisingly, this approach yields comparable and sometimes even better performance than current state-of-the-art optimizers.
引用
收藏
页码:1131 / 1170
页数:39
相关论文
共 50 条
  • [41] An Automated Robotic Arm: A Machine Learning Approach
    Rao, Krishnaraj N. S.
    Avinash, N. J.
    Moorthy, Rama H.
    Karthik, K.
    Rao, Sudesh
    Santosh, S.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [42] Assessment of Machine Learning algorithms for automated monitoring
    Rotuna, Carmen-Ionela
    Dumitrache, Mihail
    Sandu, Ionut-Eugen
    [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (03): : 73 - 84
  • [43] Automated machine learning: past, present and future
    Baratchi, Mitra
    Wang, Can
    Limmer, Steffen
    van Rijn, Jan N.
    Hoos, Holger
    Back, Thomas
    Olhofer, Markus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
  • [44] Machine Learning for Automated Quality Assurance in Radiotherapy
    El Naqa, I.
    DeMarco, J.
    Al-Hallaq, H.
    Booth, J.
    Ritter, T.
    Kim, G.
    Park, S.
    Popple, R.
    Perez, M.
    Farrey, K.
    Moran, J.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3159 - 3159
  • [45] Automated Weather Event Analysis with Machine Learning
    Hasan, Nasimul
    Uddin, Md Taufeeq
    Chowdhury, Nihad Karim
    [J]. 2016 INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE, ENGINEERING AND TECHNOLOGY (ICISET 2016), 2016,
  • [46] Automated machine learning pipeline for geochemical analysis
    Germán H. Alférez
    Oscar A. Esteban
    Benjamin L. Clausen
    Ana María Martínez Ardila
    [J]. Earth Science Informatics, 2022, 15 : 1683 - 1698
  • [47] Probabilistic Matrix Factorization for Automated Machine Learning
    Fusi, Nicolo
    Sheth, Rishit
    Elibol, Melih
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [48] Multimodal Machine Learning for Automated ICD Coding
    Xu, Keyang
    Lam, Mike
    Pang, Jingzhi
    Gao, Xin
    Band, Charlotte
    Mathur, Piyush
    Papay, Frank
    Khanna, Ashish K.
    Cywinski, Jacek B.
    Maheshwari, Kamal
    Xie, Pengtao
    Xing, Eric P.
    [J]. Proceedings of Machine Learning Research, 2019, 106 : 197 - 215
  • [49] Automated machine learning with dynamic ensemble selection
    Xiaoyan Zhu
    Jingtao Ren
    Jiayin Wang
    Jiaxuan Li
    [J]. Applied Intelligence, 2023, 53 : 23596 - 23612
  • [50] Automated ReaxFF parametrization using machine learning
    Daksha, Chaitanya M.
    Yeon, Jejoon
    Chowdhury, Sanjib C.
    Gillespie, John W., Jr.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 187