Nonstandard finite difference schemes for a fractional-order Brusselator system

被引:0
|
作者
Mevlüde Yakıt Ongun
Damla Arslan
Roberto Garrappa
机构
[1] Suleyman Demirel University,Department of Mathematics
[2] University of Bari,undefined
关键词
Fractional Order; Fractional Derivative; Fractional Calculus; Fractional Differential Equation; Discrete Representation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss numerical methods for fractional order problems. Some nonstandard finite difference schemes are presented and investigated. The application in the simulation of a fractional-order Brusselator system is hence presented. By means of some numerical experiments, we show the effectiveness of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [31] Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
    A. A. Alikhanov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 561 - 575
  • [32] Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
    Alikhanov, A. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 561 - 575
  • [33] A Nonstandard Finite Difference Scheme for Solving Fractional-Order Model of HIV-1 Infection of CD4(+) T-Cells
    Zibaei, Sadegh
    Namjoo, Miehran
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 6 (02): : 169 - 184
  • [34] Discretization schemes for fractional-order differentiators and integrators
    Chen, YQ
    Moore, KL
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (03) : 363 - 367
  • [35] Suppression of numerically induced chaos with nonstandard finite difference schemes
    de Markus, AS
    Mickens, RE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (02) : 317 - 324
  • [36] Nonstandard Finite Difference Schemes for the Black-Scholes Equation
    Ehrhardt, Matthias
    MATHEMATICS OF CONTINUOUS AND DISCRETE DYNAMICAL SYSTEMS, 2014, 618 : 217 - +
  • [37] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [38] Dynamically consistent nonstandard finite difference schemes for epidemiological models
    Anguelov, R.
    Dumont, Y.
    Lubuma, J. M. -S.
    Shillor, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 161 - 182
  • [39] Finite Time Fractional-Order Sliding Mode-Based Tracking for a Class of Fractional-Order Nonholonomic Chained System
    Deepika
    Narayan, Shiv
    Kaur, Sandeep
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (05):
  • [40] Nonstandard Finite Difference Schemes for the Study of the Dynamics of the Babesiosis Disease
    Dang, Quang A.
    Hoang, Manh T.
    Trejos, Deccy Y.
    Valverde, Jose C.
    SYMMETRY-BASEL, 2020, 12 (09):