Darboux transformation and soliton solutions for nonlocal Kundu-NLS equation

被引:0
|
作者
Yan Li
Jian Li
Ruiqi Wang
机构
[1] Shanghai University,Department of Mathematics
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
Nonlocal Kundu-NLS equation; Darboux transformation; Soliton solutions; Symmetry reduction; 35Q51; 35Q15; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we mainly study soliton solutions for nonlocal Kundu-nonlinear Schrödinger (Kundu-NLS) equation via the Darboux transformation. The nonlocal Kundu-NLS equation can be obtained through a symmetry reduction r(x,t)=q∗(-x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(x,t)=q^{*}(-x,t)$$\end{document}. The form of N-soliton solutions for the nonlocal Kundu-NLS equation can be investigated via the one-fold and n-fold Darboux transformation. Particularly, from the Darboux transformation of the nonlocal Kundu-NLS equation, we obtain some exact solutions for the nonlocal Kundu-NLS equation with different spectral parameters and corresponding graphs are given.
引用
收藏
页码:745 / 751
页数:6
相关论文
共 50 条