Infinite Random Matrices and Ergodic Measures

被引:0
|
作者
Alexei Borodin
Grigori Olshanski
机构
[1] Department of Mathematics,
[2] The University of Pennsylvania,undefined
[3] Philadelphia,undefined
[4] PA 19104-6395,undefined
[5] USA.¶ E-mail: borodine@math.upenn.edu,undefined
[6] Dobrushin Mathematics Laboratory,undefined
[7] Institute for Problems of Information Transmission,undefined
[8] ¶Bolshoy Karetny 19,undefined
[9] 101447 Moscow GSP-4,undefined
[10] Russia. E-mail: olsh@iitp.ru; olsh@online.ru,undefined
来源
关键词
Sine; Probability Measure; Point Process; Real Line; Random Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a 2-parameter family of unitarily invariant probability measures on the space of infinite Hermitian matrices. We show that the decomposition of a measure from this family on ergodic components is described by a determinantal point process on the real line. The correlation kernel for this process is explicitly computed.
引用
收藏
页码:87 / 123
页数:36
相关论文
共 50 条