On automorphisms of undirected Bruhat graphs

被引:0
|
作者
Christian Gaetz
Yibo Gao
机构
[1] Cornell University,Department of Mathematics
[2] University of Michigan,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The undirected Bruhat graphΓ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document} has the elements of the Bruhat interval [u, v] as vertices, with edges given by multiplication by a reflection. Famously, Γ(e,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (e,v)$$\end{document} is regular if and only if the Schubert variety Xv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_v$$\end{document} is smooth, and this condition on v is characterized by pattern avoidance. In this work, we classify when Γ(e,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (e,v)$$\end{document} is vertex-transitive; surprisingly this class of permutations is also characterized by pattern avoidance and sits nicely between the classes of smooth permutations and self-dual permutations. This leads us to a general investigation of automorphisms of Γ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document} in the course of which we show that special matchings, which originally appeared in the theory of Kazhdan–Lusztig polynomials, can be characterized, for the symmetric and right-angled groups, as certain Γ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document}-automorphisms which are conjecturally sufficient to generate the orbit of e under Aut(Γ(e,v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Aut}\,}}(\Gamma (e,v))$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] AUTOMORPHISMS OF POLYHEDRAL GRAPHS
    MANI, P
    MATHEMATISCHE ANNALEN, 1971, 192 (04) : 279 - &
  • [42] Unitary Graphs and Their Automorphisms
    Zhe-Xian Wan
    Kai Zhou
    Annals of Combinatorics, 2010, 14 : 367 - 395
  • [43] Automorphisms of kaleidoscopical graphs
    Protasov, I. V.
    Protasova, K. D.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (02): : 125 - 129
  • [44] Unitary Graphs and Their Automorphisms
    Wan, Zhe-Xian
    Zhou, Kai
    ANNALS OF COMBINATORICS, 2010, 14 (03) : 367 - 395
  • [45] Automorphisms of Tabacjn graphs
    Kutnar, Klavdija
    Marusic, Dragan
    Miklavic, Stefko
    Strasek, Rok
    FILOMAT, 2013, 27 (07) : 1157 - 1164
  • [46] Symplectic graphs and their automorphisms
    Tang, ZM
    Wan, ZX
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (01) : 38 - 50
  • [47] Automorphisms of Aschbacher graphs
    Makhnev A.A.
    Paduchikh D.V.
    Algebra and Logic, 2001, 40 (2) : 69 - 74
  • [48] ON AUTOMORPHISMS OF FUZZY GRAPHS
    BHUTANI, KR
    PATTERN RECOGNITION LETTERS, 1989, 9 (03) : 159 - 162
  • [49] RICCI CURVATURE, BRUHAT GRAPHS AND COXETER GROUPS
    Siconolfi, Viola
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 17 - 27
  • [50] RICCI CURVATURE, BRUHAT GRAPHS AND COXETER GROUPS
    Siconolfi, Viola
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020,