On automorphisms of undirected Bruhat graphs

被引:0
|
作者
Christian Gaetz
Yibo Gao
机构
[1] Cornell University,Department of Mathematics
[2] University of Michigan,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The undirected Bruhat graphΓ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document} has the elements of the Bruhat interval [u, v] as vertices, with edges given by multiplication by a reflection. Famously, Γ(e,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (e,v)$$\end{document} is regular if and only if the Schubert variety Xv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_v$$\end{document} is smooth, and this condition on v is characterized by pattern avoidance. In this work, we classify when Γ(e,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (e,v)$$\end{document} is vertex-transitive; surprisingly this class of permutations is also characterized by pattern avoidance and sits nicely between the classes of smooth permutations and self-dual permutations. This leads us to a general investigation of automorphisms of Γ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document} in the course of which we show that special matchings, which originally appeared in the theory of Kazhdan–Lusztig polynomials, can be characterized, for the symmetric and right-angled groups, as certain Γ(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (u,v)$$\end{document}-automorphisms which are conjecturally sufficient to generate the orbit of e under Aut(Γ(e,v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Aut}\,}}(\Gamma (e,v))$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On automorphisms of undirected Bruhat graphs
    Gaetz, Christian
    Gao, Yibo
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [2] AUTOMORPHISMS OF THE BRUHAT ORDER ON COXETER GROUPS
    WATERHOUSE, WC
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 : 243 - 248
  • [3] Balanced and Bruhat Graphs
    Ehrenborg, Richard
    Readdy, Margaret
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 587 - 617
  • [4] Balanced and Bruhat Graphs
    Richard Ehrenborg
    Margaret Readdy
    Annals of Combinatorics, 2020, 24 : 587 - 617
  • [5] Fixed points of involutive automorphisms of the Bruhat order
    Hultman, A
    ADVANCES IN MATHEMATICS, 2005, 195 (01) : 283 - 296
  • [6] ON RIGID UNDIRECTED GRAPHS
    HEDRLIN, Z
    PULTR, A
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (06): : 1237 - &
  • [7] Controllability of undirected graphs
    Farrugia, Alexander
    Sciriha, Irene
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 454 : 138 - 157
  • [8] CONJUCTION OF UNDIRECTED GRAPHS
    NIEMINEN, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (01): : 1 - 4
  • [9] On the Bruhat order of labeled graphs
    Brualdi, Richard A.
    Fernandes, Rosario
    Furtado, Susana
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 49 - 64
  • [10] Bruhat graphs and pattern avoidance
    Conklin, Christopher
    Woo, Alexander
    JOURNAL OF COMBINATORICS, 2015, 6 (1-2) : 91 - 102