An application of the Kantorovich theoremto nonlinear finite element analysis

被引:0
|
作者
Takuya Tsuchiya
机构
[1] Department of Mathematical Sciences,
[2] Faculty of Science,undefined
[3] Ehime University,undefined
[4] Matsuyama 790-8577,undefined
[5] Japan; e-mail: tsuchiya@math.sci.ehime-u.ac.jp ,undefined
来源
Numerische Mathematik | 1999年 / 84卷
关键词
Mathematics Subject Classification (1991):65L60, 65N12, 65N15, 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
Finite element solutions of strongly nonlinear elliptic boundary value problems are considered. In this paper, using the Kantorovich theorem, we show that, if the Fréchet derivative of the nonlinear operator defined by the boundary value problem is an isomorphism at an exact solution, then there exists a locally unique finite element solution near the exact solution. Moreover, several a priori error estimates are obtained.
引用
收藏
页码:121 / 141
页数:20
相关论文
共 50 条
  • [1] An application of the Kantorovich theorem to nonlinear finite element analysis
    Tsuchiya, T
    NUMERISCHE MATHEMATIK, 1999, 84 (01) : 121 - 141
  • [2] Nonlinear, finite deformation, finite element analysis
    Nhung Nguyen
    Waas, Anthony M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [3] Nonlinear, finite deformation, finite element analysis
    Nhung Nguyen
    Anthony M. Waas
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [4] Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis
    Fallah, NA
    Bailey, C
    Cross, M
    Taylor, GA
    APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) : 439 - 455
  • [5] Finite element analysis and application for a nonlinear diffusion model in image denoising
    Li, JC
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (05) : 649 - 662
  • [6] Application of Finite Element Method for Nonlinear Analysis in Reinfocred Concrete Structures
    Zhou Mingrong
    PROGRESS IN STRUCTURE, PTS 1-4, 2012, 166-169 : 935 - 938
  • [7] Nonlinear finite element analysis of magnetostrictive
    Kaltenbacher, M
    Schneider, S
    Simkovics, R
    Landes, H
    Lerch, R
    SMART STRUCTURES AND MATERIALS 2001: MODELING, SIGNAL PROCESSING, AND CONTROL IN SMART STRUCTURES, 2001, 4326 : 160 - 168
  • [8] Nonlinear Finite Element Analysis of FQQB
    Zhao, Fenghua
    Qi, Yongsheng
    Zhou, Yiyi
    CIVIL ENGINEERING, ARCHITECTURE AND SUSTAINABLE INFRASTRUCTURE II, PTS 1 AND 2, 2013, 438-439 : 639 - +
  • [9] The Application of Contact Element in Finite Element Analysis
    Zhang, Yingqian
    INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS RESEARCH, 2013, 422 : 100 - 104
  • [10] Application of nonlinear finite element method in rock mechanics
    2001, Changsha Research Institute of Mining and Metallurgy (21):