Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime

被引:0
|
作者
Yanlin Li
Xuelian Jiang
Zhigang Wang
机构
[1] Hangzhou Normal University,School of Mathematics
[2] Harbin Normal University,School of Mathematical Sciences
来源
关键词
Darboux frame; Lorentzian Darboux surfaces; Legendrian duality; Swallowtail; 53A35; 58C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by virtue of unfolding theory in singularity theory, we investigate the singularities of five special surfaces generated by a regular curve lying on a spacelike hypersurface in Lorentz–Minkowski 4-space. Using two kinds of extended Lorentzian Darboux frames along the curve as tools, five new invariants are obtained to characterize the singularities of five special surfaces and their geometric meanings are discussed in detail. In addition, some dual relationships between a normal curve of the original curve and five surfaces are revealed under the meanings of Legendrian duality.
引用
收藏
相关论文
共 50 条
  • [31] SOME L1-BICONSERVATIVE LORENTZIAN HYPERSURFACES IN THE LORENTZ-MINKOWSKI SPACES
    Pashaie, Firooz
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (02): : 229 - 243
  • [32] TIMELIKE LOXODROMES ON LORENTZIAN HELICOIDAL SURFACES IN MINKOWSKI n-SPACE
    Demirci, Burcu Bektas
    Babaarslan, Murat
    Oge, Zehra
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 856 - 869
  • [33] Projective properties of Lorentzian surfaces
    Mounoud, Pierre
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (04) : 999 - 1011
  • [34] Lorentz-Darboux rectifying surfaces and osculating surfaces along frontal curves on timelike surfaces
    Jiang, Jiakun
    Liu, Siyao
    Wang, Zhigang
    Liu, Haiming
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [35] Bjorling problem for timelike surfaces in the Lorentz-Minkowski space
    Chaves, R. M. B.
    Dussan, M. P.
    Magid, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 481 - 494
  • [36] Bjorling problem for maximal surfaces in Lorentz-Minkowski space
    Alías, LJ
    Chaves, RMB
    Mira, P
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 289 - 316
  • [37] DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE
    Lopez, Rafael
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2014, 7 (01): : 44 - 107
  • [38] Isometric Generalized Maximal Surfaces in Lorentz-Minkowski Space
    Araujo, Henrique
    [J]. RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 83 - 90
  • [39] RULED SURFACES IN LORENTZ-MINKOWSKI 3-SPACE
    Manhart, Friedrich
    [J]. INTERNATIONAL WORKSHOP ON LINE GEOMETRY & KINEMATICS, IW - LGK - 11, 2011, : 63 - 70
  • [40] Finite type ruled surfaces in Lorentz-Minkowski space
    Kim, Dong-Soo
    Kim, Young Ho
    Yoon, Dae Won
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (01): : 1 - 13