On the Pseudohermitian Curvature of Contact Semi-Riemannian Manifolds

被引:0
|
作者
Domenico Perrone
机构
[1] Universitá del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
Results in Mathematics | 2020年 / 75卷
关键词
Contact semi-Riemannian manifolds; Non-degenerate almost CR structures; Pseudohermitian Ricci tensor; -contact; Pseudo-Einstein and ; -Einstein manifolds; Sasakian manifolds; Tangent sphere bundles; 53D15; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a contact semi-Riemannian manifold, equivalently a non degenerate almost CR manifold. In this paper we study the pseudo-hermitian Ricci curvature, pseudo-Einstein and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein manifolds. Then, by using the pseudo-Einstein and the η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein conditions, some rigidity theorems are established to characterize Sasakian manifolds among nondegenerate CR manifolds. In particular, if the Webster metric gθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\theta $$\end{document} of nondegenerate CR structure (H,θ,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},\theta ,J)$$\end{document} is pseudo-Einstein with Webster scalar curvature r^≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{r}}\ne 0$$\end{document}, then there exists a real constant t≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ne 0$$\end{document} for which the Webster metric associated to (H,tθ,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},t\theta ,J)$$\end{document} is Einstein–Sasakian.
引用
收藏
相关论文
共 50 条
  • [31] On the geodesical connectedness for a class of semi-Riemannian manifolds
    Giannoni, F
    Piccione, P
    Sampalmieri, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 444 - 476
  • [32] Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds
    Perktas, Selcen Yuksel
    Erdogan, Feyza Esra
    Acet, Bilal Eftal
    [J]. FILOMAT, 2020, 34 (06) : 1781 - 1794
  • [33] NULL SECTIONAL CURVATURE PINCHING FOR CR-LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS
    Jamali, Mohammed
    Shahid, Mohammad Hasan
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (04): : 108 - 115
  • [34] Semi-Riemannian manifolds with a doubly warped structure
    Gutierrez, Manuel
    Olea, Benjamin
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) : 1 - 24
  • [35] CHARACTERIZATIONS OF GENERIC SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS
    PELLETIER, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (13): : 651 - 654
  • [36] ON COMPLETENESS OF CERTAIN FAMILIES OF SEMI-RIEMANNIAN MANIFOLDS
    ROMERO, A
    SANCHEZ, M
    [J]. GEOMETRIAE DEDICATA, 1994, 53 (01) : 103 - 117
  • [37] Extending Translating Solitons in Semi-Riemannian Manifolds
    Kocakusakli, Erdem
    Ortega, Miguel
    [J]. LORENTZIAN GEOMETRY AND RELATED TOPICS, GELOMA 2016, 2017, 211 : 153 - 168
  • [38] Lightlike Osserman submanifolds of semi-Riemannian manifolds
    Atindogbe C.
    Lungiambudila O.
    Tossa J.
    [J]. Afrika Matematika, 2011, 22 (2) : 129 - 151
  • [39] On totally umbilic submanifolds of semi-Riemannian manifolds
    Perlick, Volker
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E511 - E518
  • [40] Spacetimes with distributional semi-Riemannian metrics and their curvature
    Nigsch, E. A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 151