On the Pseudohermitian Curvature of Contact Semi-Riemannian Manifolds

被引:0
|
作者
Domenico Perrone
机构
[1] Universitá del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
Results in Mathematics | 2020年 / 75卷
关键词
Contact semi-Riemannian manifolds; Non-degenerate almost CR structures; Pseudohermitian Ricci tensor; -contact; Pseudo-Einstein and ; -Einstein manifolds; Sasakian manifolds; Tangent sphere bundles; 53D15; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a contact semi-Riemannian manifold, equivalently a non degenerate almost CR manifold. In this paper we study the pseudo-hermitian Ricci curvature, pseudo-Einstein and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein manifolds. Then, by using the pseudo-Einstein and the η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein conditions, some rigidity theorems are established to characterize Sasakian manifolds among nondegenerate CR manifolds. In particular, if the Webster metric gθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\theta $$\end{document} of nondegenerate CR structure (H,θ,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},\theta ,J)$$\end{document} is pseudo-Einstein with Webster scalar curvature r^≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{r}}\ne 0$$\end{document}, then there exists a real constant t≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ne 0$$\end{document} for which the Webster metric associated to (H,tθ,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},t\theta ,J)$$\end{document} is Einstein–Sasakian.
引用
收藏
相关论文
共 50 条