Small Universal Graphs for Bounded-Degree Planar Graphs

被引:0
|
作者
Michael Capalbo
机构
[1] Department of Mathematical Sciences,
[2] The Johns Hopkins University; Baltimore,undefined
[3] MD,undefined
[4] USA; E-mail: mrc@ias.edu,undefined
来源
Combinatorica | 2002年 / 22卷
关键词
AMS Subject Classification (2000) Classes:  05C35;
D O I
暂无
中图分类号
学科分类号
摘要
For all positive integers N and k, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} denote the family of planar graphs on N or fewer vertices, and with maximum degree k. For all positive integers N and k, we construct a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-universal graph of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. This construction answers with an explicit construction the previously open question of the existence of such a graph.
引用
收藏
页码:345 / 359
页数:14
相关论文
共 50 条
  • [41] A lower bound for testing 3-colorability in bounded-degree graphs
    Bogdanov, A
    Obata, K
    Trevisan, L
    [J]. FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 93 - 102
  • [42] Planar Graphs of Bounded Degree Have Bounded Queue Number
    Bekos, Michael
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 176 - 184
  • [43] PLANAR GRAPHS OF BOUNDED DEGREE HAVE BOUNDED QUEUE NUMBER
    Bekos, Michael A.
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    [J]. SIAM JOURNAL ON COMPUTING, 2019, 48 (05) : 1487 - 1502
  • [44] APPROXIMATELY COUNTING INDEPENDENT SETS OF A GIVEN SIZE IN BOUNDED-DEGREE GRAPHS
    Davies, Ewan
    Perkins, Will
    [J]. SIAM JOURNAL ON COMPUTING, 2023, 52 (02) : 618 - 640
  • [45] Quantum speedup of the traveling-salesman problem for bounded-degree graphs
    Moylett, Dominic J.
    Linden, Noah
    Montanaro, Ashley
    [J]. PHYSICAL REVIEW A, 2017, 95 (03)
  • [46] DRAWING PLANAR GRAPHS OF BOUNDED DEGREE WITH FEW SLOPES
    Keszegh, Balazs
    Pach, Janos
    Palvoelgyi, Doemoetoer
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 1171 - 1183
  • [47] Elimination Distance to Bounded Degree on Planar Graphs Preprint
    Lindermayr, Alexander
    Siebertz, Sebastian
    Vigny, Alexandre
    [J]. FUNDAMENTA INFORMATICAE, 2024, 191 (02) : 129 - 140
  • [48] On the vertex partition of planar graphs into forests with bounded degree
    Wang, Yang
    Huang, Danjun
    Finbow, Stephen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
  • [49] Drawing Planar Graphs of Bounded Degree with Few Slopes
    Keszegh, Balazs
    Pach, Janos
    Palvoelgyi, Doemoetoer
    [J]. GRAPH DRAWING, 2011, 6502 : 293 - 304
  • [50] The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degree
    Blaeser, Markus
    Curticapean, Radu
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 96 - 107