Second-order sensitivity of eigenpairs in multiple parameter structures

被引:0
|
作者
Su-huan Chen
Rui Guo
Guang-wei Meng
机构
[1] Jilin University,College of Mechanical Science and Engineering
[2] Jilin University,State Key Laboratory of Automobile Dynamic Simulation
来源
关键词
multiple parameter structures; second-order sensitivity of eigenpairs; efficient computational method; O327; 45C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms, and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed. With these formulations, the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation, and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs. A numerical example is given to demonstrate application and accuracy of the proposed method.
引用
收藏
页码:1475 / 1487
页数:12
相关论文
共 50 条
  • [31] PORT-ESTIMATION OF A SHAPE SECOND-ORDER PARAMETER
    Rodrigues, Ligia Henriques
    Gomes, M. Ivette
    Alves, M. Isabel Fraga
    Neves, Claudia
    REVSTAT-STATISTICAL JOURNAL, 2014, 12 (03) : 299 - 328
  • [32] Taguchi parameter design by second-order response surfaces
    Engel, J
    Huele, AF
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 1996, 12 (02) : 95 - 100
  • [34] STIMULUS FUNCTIONS IN A MULTIPLE SECOND-ORDER SCHEDULE
    MARR, MJ
    PSYCHONOMIC SCIENCE, 1972, 29 (05): : 323 - &
  • [35] PERIODIC SOLUTIONS FOR A SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER AND MULTIPLE DEVIATING ARGUMENTS
    Du, Bo
    Wang, Xiaojing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [36] Modulation of the second-order nonlinear tensor components in multiple-quantum-well structures
    Aitchison, JS
    Street, MW
    Whitbread, ND
    Hutchings, DC
    Marsh, JH
    Kennedy, GT
    Sibbett, W
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1998, 4 (04) : 695 - 700
  • [37] AN EXTENSION TO SIMULTANEOUS GENERATION OF SECOND-ORDER SENSITIVITY FUNCTIONS
    ROBINSON, WR
    SOUDACK, AC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (02) : 211 - &
  • [38] Wideband Second-Order Adjoint Sensitivity Analysis of High-Frequency Structures Using FDTD
    Zhang, Yu
    Bakr, Mohamed H.
    2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2015,
  • [39] Second-order efficiency conditions and sensitivity of efficient points
    Bolintineanu, S
    El Maghri, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) : 569 - 592
  • [40] A normative framework for the study of second-order sensitivity in vision
    Reynaud, Alexandre
    Tang, Yong
    Zhou, Yifeng
    Hess, Robert F.
    JOURNAL OF VISION, 2014, 14 (09):