The Lattice of Varieties of Implication Semigroups

被引:0
|
作者
Sergey V. Gusev
Hanamantagouda P. Sankappanavar
Boris M. Vernikov
机构
[1] Ural Federal University,Institute of Natural Sciences and Mathematics
[2] State University of New York,Department of Mathematics
来源
Order | 2020年 / 37卷
关键词
Implication semigroup; Variety; Lattice of varieties;
D O I
暂无
中图分类号
学科分类号
摘要
An implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-ary operation 0 satisfying the identities (x→y)→z≈x→(y→z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x\rightarrow y)\rightarrow z\approx x\rightarrow (y\rightarrow z)$\end{document}, (x→y)→z≈(z′→x)→(y→z)′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x\rightarrow y)\rightarrow z\approx \left [(z^{\prime }\rightarrow x)\rightarrow (y\rightarrow z)'\right ]'$\end{document} and 0′′≈0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0^{\prime \prime }\approx 0$\end{document} where u′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {u}^{\prime }$\end{document} means u→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf u\rightarrow 0$\end{document} for any term u. We completely describe the lattice of varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements.
引用
收藏
页码:271 / 277
页数:6
相关论文
共 50 条
  • [31] Varieties of restriction semigroups and varieties of categories
    Jones, Peter R.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) : 1037 - 1056
  • [32] VARIETIES OF COMMUTATIVE SEMIGROUPS
    KISIELEWICZ, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) : 275 - 306
  • [33] HYPERASSOCIATIVE VARIETIES OF SEMIGROUPS
    DENECKE, K
    KOPPITZ, J
    SEMIGROUP FORUM, 1994, 49 (01) : 41 - 48
  • [34] PRECOMPLETE VARIETIES OF SEMIGROUPS
    SUBRAMAN.H
    SUNDARAR.TR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 634 - &
  • [35] On varieties of ordered semigroups
    Martin Kuřil
    Semigroup Forum, 2015, 90 : 475 - 490
  • [36] Saturated Varieties of Semigroups
    Nabi, Muneer
    Alali, Amal S.
    Bano, Sakeena
    SYMMETRY-BASEL, 2023, 15 (08):
  • [37] Quasilinear varieties of semigroups
    Dolinka, Igor
    Dapic, Petar
    SEMIGROUP FORUM, 2009, 79 (03) : 445 - 450
  • [38] UNIVERSAL VARIETIES OF SEMIGROUPS
    KOUBEK, V
    SICHLER, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (APR): : 143 - 152
  • [39] ON THE VARIETIES OF CLIFFORDIAN SEMIGROUPS
    RASIN, VV
    SEMIGROUP FORUM, 1981, 23 (03) : 201 - 220
  • [40] Quasilinear varieties of semigroups
    Igor Dolinka
    Petar Đapić
    Semigroup Forum, 2009, 79 : 445 - 450