The Lattice of Varieties of Implication Semigroups

被引:0
|
作者
Sergey V. Gusev
Hanamantagouda P. Sankappanavar
Boris M. Vernikov
机构
[1] Ural Federal University,Institute of Natural Sciences and Mathematics
[2] State University of New York,Department of Mathematics
来源
Order | 2020年 / 37卷
关键词
Implication semigroup; Variety; Lattice of varieties;
D O I
暂无
中图分类号
学科分类号
摘要
An implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-ary operation 0 satisfying the identities (x→y)→z≈x→(y→z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x\rightarrow y)\rightarrow z\approx x\rightarrow (y\rightarrow z)$\end{document}, (x→y)→z≈(z′→x)→(y→z)′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x\rightarrow y)\rightarrow z\approx \left [(z^{\prime }\rightarrow x)\rightarrow (y\rightarrow z)'\right ]'$\end{document} and 0′′≈0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0^{\prime \prime }\approx 0$\end{document} where u′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {u}^{\prime }$\end{document} means u→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf u\rightarrow 0$\end{document} for any term u. We completely describe the lattice of varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements.
引用
收藏
页码:271 / 277
页数:6
相关论文
共 50 条