Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems

被引:0
|
作者
Jinchuan Hou
Yu Guo
机构
[1] Taiyuan University of Technology,Department of Mathematics
[2] Shanxi University,Department of Mathematics
[3] Shanxi Datong University,Department of Mathematics
关键词
Quantum state; Bipartite composite quantum systems; Entanglement; Entanglement witnesses; Infinite-dimensional Hilbert spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, two approaches of constructing entanglement witnesses for finite- or infinite-dimensional bipartite quantum systems are presented. Let HA and HB be complex Hilbert spaces and {Ek} and {Fk} be sequences of self-adjoint Hilbert-Schmidt operators on HA and HB, respectively, such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Tr}(E^{\dag}_{k}E_{l})=\mathrm{Tr}(F^{\dag}_{k}F_{l})=\delta_{kl}$\end{document}. Then W=I−∑kEk⊗Fk is an entanglement witness on HA⊗HB if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\not\geq 0$\end{document}. If ρ is an entangled state and τ0 is the nearest separable state to ρ under the Hilbert-Schmidt norm, then W=c0I+τ0−ρ with c0=Tr[τ0(ρ−τ0)] is an entanglement witness.
引用
下载
收藏
页码:1245 / 1254
页数:9
相关论文
共 50 条