Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems

被引:0
|
作者
Jinchuan Hou
Yu Guo
机构
[1] Taiyuan University of Technology,Department of Mathematics
[2] Shanxi University,Department of Mathematics
[3] Shanxi Datong University,Department of Mathematics
关键词
Quantum state; Bipartite composite quantum systems; Entanglement; Entanglement witnesses; Infinite-dimensional Hilbert spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, two approaches of constructing entanglement witnesses for finite- or infinite-dimensional bipartite quantum systems are presented. Let HA and HB be complex Hilbert spaces and {Ek} and {Fk} be sequences of self-adjoint Hilbert-Schmidt operators on HA and HB, respectively, such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Tr}(E^{\dag}_{k}E_{l})=\mathrm{Tr}(F^{\dag}_{k}F_{l})=\delta_{kl}$\end{document}. Then W=I−∑kEk⊗Fk is an entanglement witness on HA⊗HB if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\not\geq 0$\end{document}. If ρ is an entangled state and τ0 is the nearest separable state to ρ under the Hilbert-Schmidt norm, then W=c0I+τ0−ρ with c0=Tr[τ0(ρ−τ0)] is an entanglement witness.
引用
收藏
页码:1245 / 1254
页数:9
相关论文
共 50 条
  • [1] Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems
    Hou, Jinchuan
    Guo, Yu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1245 - 1254
  • [2] Constructing Entanglement Witnesses for Infinite-Dimensional Systems
    Hou, Jinchuan
    Wang, Wenli
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (04) : 1269 - 1281
  • [3] Constructing Entanglement Witnesses for Infinite-Dimensional Systems
    Jinchuan Hou
    Wenli Wang
    [J]. International Journal of Theoretical Physics, 2019, 58 : 1269 - 1281
  • [4] Constructing entanglement witnesses for infinite-dimensional systems
    Hou, Jinchuan
    Qi, Xiaofei
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [5] Entanglement convertibility for infinite-dimensional pure bipartite states
    Owari, M
    Matsumoto, K
    Murao, M
    [J]. PHYSICAL REVIEW A, 2004, 70 (05): : 050301 - 1
  • [6] An entanglement criterion for states in infinite-dimensional multipartite quantum systems
    WANG YinZhu 1
    2 Department of Mathematics
    3 Department of Mathematics
    [J]. Chinese Science Bulletin, 2012, 57 (14) : 1643 - 1647
  • [7] An entanglement criterion for states in infinite-dimensional multipartite quantum systems
    Wang YinZhu
    Hou JinChuan
    Guo Yu
    [J]. CHINESE SCIENCE BULLETIN, 2012, 57 (14): : 1643 - 1647
  • [8] Constructing k-Schmidt witnesses for infinite-dimensional systems
    Li, Xin
    Fang, Xiaochun
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 754 - 764
  • [9] On the quantification of entanglement in infinite-dimensional quantum systems
    Eisert, J
    Simon, C
    Plenio, MB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17): : 3911 - 3923
  • [10] Fidelity and entanglement fidelity for infinite-dimensional quantum systems
    Wang, Li
    Hou, Jinchuan
    Qi, Xiaofei
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (33)