Hopf Bifurcations in a Watt Governor with a Spring

被引:0
|
作者
Jorge Sotomayor
Luis Fernando Mello
Denis de Carvalho Braga
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
[2] Rua do Matão 1010,Instituto de Ciências Exatas
[3] Cidade Universitá ria,Instituto de Sistemas Elétricos e Energia
[4] Universidade Federal de Itajubá,undefined
[5] Universidade Federal de Itajubá,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper pursues the study carried out in [10], focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of codimensions two, three and four and the pertinent Lyapunov stability coefficients and bifurcation diagrams. This allows to determine the number, types and positions of bifurcating small amplitude periodic orbits. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.
引用
收藏
页码:288 / 299
页数:11
相关论文
共 50 条
  • [1] Hopf Bifurcations in a Watt Governor with a Spring
    Sotomayor, Jorge
    Mello, Luis Fernando
    de Carvalho Braga, Denis
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 288 - 299
  • [2] Hopf bifurcation in an hexagonal governor system with a spring
    Zhang, Jian-Gang
    Mello, Luis Fernando
    Chu, Yan-Dong
    Li, Xian-Feng
    An, Xin-Lei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) : 778 - 786
  • [3] Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system
    Zhang, Jian-Gang
    Li, Xian-Feng
    Chu, Yan-Dong
    Yu, Jian-Ning
    Chang, Ying-Xiang
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2150 - 2168
  • [4] Watt steam governor stability
    Denny, M
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (03) : 339 - 351
  • [5] Bifurcation analysis of the Watt governor system
    Sotomayor, Jorge
    Mello, Luis Fernando
    Braga, Denis de Carvalho
    Computational and Applied Mathematics, 2007, 26 (01) : 19 - 44
  • [6] Bifurcation analysis of the Watt governor system
    Sotomayor, Jorge
    Mello, Luis Fernando
    Braga, Denis de Carvalho
    COMPUTATIONAL & APPLIED MATHEMATICS, 2007, 26 (01): : 19 - 44
  • [7] Nonlinear Hopf bifurcations
    Krasnosel'skii, AM
    Kuznetsov, NA
    Rachinskii, DI
    DOKLADY MATHEMATICS, 2000, 61 (03) : 389 - 392
  • [8] ON GENERALIZED HOPF BIFURCATIONS
    HUSEYIN, K
    ATADAN, AS
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1984, 106 (04): : 327 - 334
  • [9] ON THE ANALYSIS OF HOPF BIFURCATIONS
    HUSEYIN, K
    ATADAN, AS
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (03) : 247 - 262
  • [10] On the control of Hopf bifurcations
    Hamzi, B
    Kang, W
    Barbot, JP
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1631 - 1636