By considering spectral triples on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${S^{2}_{\mu, c}\,\, (c >0 )}$$\end{document} constructed by Chakraborty and Pal (Commun Math Phys 240(3):447–456, 2000), we show that in general the quantum group of volume and orientation preserving isometries (in the sense of Bhowmick and Goswami in J Funct Anal 257:2530–2572, 2009) for a spectral triple of compact type may not have a C*-action, and moreover, it can fail to be a matrix quantum group. It is also proved that the category with objects consisting of those volume and orientation preserving quantum isometries which induce C*-action on the C* algebra underlying the given spectral triple, may not have a universal object.