Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution

被引:0
|
作者
Fatih Kızılaslan
Mustafa Nadar
机构
[1] Selimiye,Department of Mathematical Engineering
[2] Istanbul Technical University,undefined
来源
Statistical Papers | 2018年 / 59卷
关键词
Bivariate Kumaraswamy distribution; Stress–strength reliability; Multicomponent reliability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a system which has k statistically independent and identically distributed strength components and each component is constructed by a pair of statistically dependent elements. These elements (X1,Y1),(X2,Y2),…,(Xk,Yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (X_{1},Y_{1}),(X_{2},Y_{2}),\ldots ,(X_{k},Y_{k})$$\end{document} follow a bivariate Kumaraswamy distribution and each element is exposed to a common random stress T which follows a Kumaraswamy distribution. The system is regarded as operating only if at least s out of k(1≤s≤k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le s\le k)$$\end{document} strength variables exceed the random stress. The multicomponent reliability of the system is given by Rs,k=P(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{s,k}=P($$\end{document}at least s of the (Z1,…,Zk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Z_{1},\ldots ,Z_{k})$$\end{document} exceed T) where Zi=min(Xi,Yi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{i}=\min (X_{i},Y_{i})$$\end{document}, i=1,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots ,k$$\end{document}. We estimate Rs,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{s,k}$$\end{document} by using frequentist and Bayesian approaches. The Bayes estimates of Rs,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{s,k}$$\end{document} have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms. The uniformly minimum variance unbiased and exact Bayes estimates of Rs,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{s,k}$$\end{document} are obtained analytically when the common second shape parameter is known. The asymptotic confidence interval and the highest probability density credible interval are constructed for Rs,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{s,k}$$\end{document}. The reliability estimators are compared by using the estimated risks through Monte Carlo simulations. Real data are analysed for an illustration of the findings.
引用
收藏
页码:307 / 340
页数:33
相关论文
共 50 条
  • [41] Estimation of multicomponent stress-strength reliability following Weibull distribution based on upper record values
    Hassan, Amal S.
    Nagy, Heba F.
    Muhammed, Hiba Z.
    Saad, Mohammed S.
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 244 - 253
  • [42] Estimation of reliability in a multicomponent stress-strength system for the exponentiated moment-based exponential distribution
    Rao, G. Srinivasa
    Bhatti, Fiaz Ahmad
    Aslam, Muhammad
    Albassam, Mohammed
    [J]. Algorithms, 2019, 12 (02):
  • [43] Estimation of Reliability in a Multicomponent Stress-Strength System for the Exponentiated Moment-Based Exponential Distribution
    Rao, G. Srinivasa
    Bhatti, Fiaz Ahmad
    Aslam, Muhammad
    Albassam, Mohammed
    [J]. ALGORITHMS, 2019, 12 (12)
  • [44] Estimation of reliability of multicomponent stress-strength inverted exponentiated Rayleigh model
    Sharma, Vikas Kumar
    Dey, Sanku
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2019, 36 (03) : 181 - 192
  • [45] Based Copula Reliability Estimation with Stress-Strength Model for Bivariate Stress under Progressive Type II Censoring
    Wang, Junrui
    Yan, Rongfang
    [J]. SYMMETRY-BASEL, 2024, 16 (03):
  • [46] Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring
    Mahto, Amulya Kumar
    Tripathi, Yogesh Mani
    [J]. OPSEARCH, 2020, 57 (04) : 1043 - 1069
  • [47] Classical and Bayesian estimation of multicomponent stress-strength reliability for exponentiated Pareto distribution
    Akgul, Fatma Gul
    [J]. SOFT COMPUTING, 2021, 25 (14) : 9185 - 9197
  • [48] Estimation of stress-strength reliability for multicomponent system with a generalized inverted exponential distribution
    Wang, Liang
    Wu, Shuo-Jye
    Dey, Sanku
    Tripathi, Yogesh Mani
    Mao, Song
    [J]. STOCHASTIC MODELS, 2023, 39 (04) : 715 - 740
  • [49] Estimation of Multicomponent Stress-Strength Reliability with Exponentiated Generalized Inverse Rayleigh Distribution
    Temraz, Neama Salah Youssef
    [J]. ENGINEERING LETTERS, 2024, 32 (08) : 1623 - 1631
  • [50] Reliability estimation in a multicomponent stress-strength model for unit Burr III distribution under progressive censoring
    Singh, Devendra Pratap
    Jha, Mayank Kumar
    Tripathi, Yogesh
    Wang, Liang
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2022, 19 (05): : 605 - 632