SuperSpec, The On-Chip Spectrometer: Improved NEP and Antenna Performance

被引:0
|
作者
Jordan Wheeler
S. Hailey-Dunsheath
E. Shirokoff
P. S. Barry
C. M. Bradford
S. Chapman
G. Che
S. Doyle
J. Glenn
S. Gordon
M. Hollister
A. Kovács
H. G. LeDuc
P. Mauskopf
R. McGeehan
C. McKenney
T. Reck
J. Redford
C. Ross
C. Shiu
C. Tucker
J. Turner
S. Walker
J. Zmuidzinas
机构
[1] University of Colorado,Center for Astrophysics and Space Astronomy
[2] California Institute of Technology,Department of Astronomy and Astrophysics
[3] University of Chicago,School of Physics and Astronomy
[4] Cardiff University,Department of Physics and Atmospheric Science
[5] Jet Propulsion Laboratory,Department of Physics, School of Earth and Space Exploration
[6] Dalhousie University,Department of Physics and Astronomy
[7] Arizona State University,undefined
[8] National Institute of Standards and Technology,undefined
[9] University of Wyoming,undefined
来源
关键词
Spectrometer; Kinetic inductance detectors; NEP; Bow tie; Antenna; mm-wave;
D O I
暂无
中图分类号
学科分类号
摘要
SuperSpec is a new technology for mm and sub-mm spectroscopy. It is an on-chip spectrometer being developed for multi-object, moderate-resolution (R∼300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\sim 300$$\end{document}), large bandwidth survey spectroscopy of high-redshift galaxies for the 1 mm atmospheric window. This band accesses the CO ladder in the redshift range of z=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z =$$\end{document} 0–4 and the [CII] 158 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m line from redshift z=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z =$$\end{document}  5–9. SuperSpec employs a novel architecture in which detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. This construction allows for the creation of a full spectrometer occupying only ∼10cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10\,\hbox {cm}^2$$\end{document} of silicon, a reduction in size of several orders of magnitude when compared to standard grating spectrometers. This small profile enables the production of future multi-beam spectroscopic instruments envisioned for the millimeter band to measure the redshifts of dusty galaxies efficiently. The SuperSpec collaboration is currently pushing toward the deployment of a SuperSpec demonstration instrument in fall of 2018. The progress with the latest SuperSpec prototype devices is presented; reporting increased responsivity via a reduced inductor volume (2.6 μm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}^3$$\end{document}) and the incorporation of a new broadband antenna. A detector NEP of 3–4 ×10-18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 10^{-18}$$\end{document} W/Hz0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0.5}$$\end{document} is obtained, sufficient for background-limited observation on mountaintop sites. In addition, beam maps and efficiency measurements of a new wide-band dual bow-tie slot antenna are shown.
引用
收藏
页码:408 / 414
页数:6
相关论文
共 50 条
  • [41] A 60-GHz On-Chip Tapered Slot Vivaldi Antenna with Improved Radiation Characteristics
    E-Hameed, Anwer S. Abd
    Mahmoud, Nessim
    Barakat, Adel
    Abdel-Rahman, Adel B.
    Allam, Ahmed
    Pokharel, Ramesh K.
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [42] On-Chip Wireless Channel Propagation: Impact of Antenna Directionality and Placement on Channel Performance
    Gade, Harsha
    Rout, Sidhartha Sankar
    Deb, Sujay
    2018 TWELFTH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NETWORKS-ON-CHIP (NOCS), 2018,
  • [43] High Performance Metasurface-Based On-Chip Antenna for Terahertz Integrated Circuits
    Alibakhshikenari, Mohammad
    Parchin, Naser Ojaroudi
    Virdee, Bal Singh
    See, Chan Hwang
    Abd-Alhameed, Raed A.
    Falcone, Francisco
    Limiti, Ernesto
    2020 THIRD INTERNATIONAL WORKSHOP ON MOBILE TERAHERTZ SYSTEMS (IWMTS), 2020,
  • [44] 135-GHz Micromachined On-Chip Antenna and Antenna Array
    Chu, Hui
    Guo, Yong-Xin
    Lim, Teck-Guan
    Khoo, Yee Mong
    Shi, Xiangquan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (10) : 4582 - 4588
  • [45] MW-PPG Sensor: An on-Chip Spectrometer Approach
    Chang, Cheng-Chun
    Wu, Chien-Ta
    Choi, Byung Il
    Fang, Tong-Jing
    SENSORS, 2019, 19 (17)
  • [46] On-chip polarization-insensitive Fourier transform spectrometer
    Wang, Huijie
    Li, Qifeng
    Shi, Wei
    OPTICS LETTERS, 2020, 45 (06) : 1479 - 1482
  • [47] On-chip Fourier transform spectrometer on silicon-on-sapphire
    Heidari, Elham
    Xu, Xiaochuan
    Chung, Chi-Jui
    Chen, Ray T.
    OPTICS LETTERS, 2019, 44 (11) : 2883 - 2886
  • [48] Wideband on-chip terahertz spectrometer based on a superconducting filterbank
    Endo, Akira
    Karatsu, Kenichi
    Laguna, Alejandro Pascual
    Mirzaei, Behnam
    Huiting, Robert
    Thoen, David J.
    Murugesan, Vignesh
    Yates, Stephen J. C.
    Bueno, Juan
    van Marrewijk, Nuri
    Bosma, Sjoerd
    Yurduseven, Ozan
    Llombart, Nuria
    Suzuki, Junya
    Naruse, Masato
    de Visser, Pieter J.
    van der Werf, Paul P.
    Klapwijk, Teun M.
    Baselmans, Jochem J. A.
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2019, 5 (03)
  • [49] On-Chip Photonic MEMS Coupled-Cavity Spectrometer
    Elzeiny, Walid Elsayed
    Eltagoury, Yomna M. M.
    Sabry, Yasser M. M.
    Khalil, Diaa A. A.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2023, 35 (17) : 951 - 954
  • [50] Ultra-High Resolution Wideband on-Chip Spectrometer
    Hasan, Mehedi
    Rad, Mohammad
    Hasan, Gazi Mahamud
    Liu, Peng
    Dumais, Patrick
    Bernier, Eric
    Hall, Trevor J.
    IEEE PHOTONICS JOURNAL, 2020, 12 (05):