Monotone traveling waves for reaction-diffusion equations involving the curvature operator

被引:0
|
作者
Maurizio Garrione
Luís Sanchez
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica ed Applicazioni
[2] Faculdade de Ciências da Universidade de Lisboa,CMAF
来源
关键词
traveling waves; lower and upper solutions; mean curvature operator; 34C37; 35K57; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of monotone traveling waves u(t,x)=u(x+ct)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(t, x)=u(x+ct)$\end{document}, connecting two equilibria, for the reaction-diffusion PDE ut=(ux1+ux2)x+f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{t} = (\frac{u_{x}}{\sqrt{1+u_{x}^{2}}} )_{x} + f(u)$\end{document}. Assuming different forms for the reaction term f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} (among which we have the so-called types A, B, and C), we show that, concerning the admissible speeds, the situation presents both similarities and differences with respect to the classical case. We use a first order model obtained after a suitable change of variables. The model contains a singularity and therefore has some features which are not present in the case of linear diffusion. The technique used involves essentially shooting arguments and lower and upper solutions. Some numerical simulations are provided in order to better understand the features of the model.
引用
收藏
相关论文
共 50 条
  • [21] Traveling waves in nonlocal delayed reaction-diffusion bistable equations and applications
    Li, Kun
    He, Yanli
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2769 - 2786
  • [22] Traveling waves for discrete reaction-diffusion equations in the general monostable case
    Al Haj, M.
    Monneau, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 378 : 707 - 756
  • [23] Global asymptotic stability of traveling waves in delayed reaction-diffusion equations
    Smith, HL
    Zhao, XQ
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) : 514 - 534
  • [24] A NOTE ON MONOTONE ITERATION METHOD FOR TRAVELING WAVES OF REACTION-DIFFUSION SYSTEMS WITH TIME DELAY
    Huang, Wenzhang
    Wu, Yinshu
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2014, 4 (03): : 283 - 294
  • [25] Monotone waves for non-monotone and non-local monostable reaction-diffusion equations
    Trofimchuk, Elena
    Pinto, Manuel
    Trofimchuk, Sergei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1203 - 1236
  • [26] STABILITY OF NON-MONOTONE NON-CRITICAL TRAVELING WAVES IN DISCRETE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY
    Yang, Zhao-Xing
    Zhang, Guo-Bao
    Tian, Ge
    Feng, Zhaosheng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 581 - 603
  • [27] Algebraic traveling waves for some family of reaction-diffusion equations including the Nagumo equations
    Claudia Valls
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [28] Algebraic traveling waves for some family of reaction-diffusion equations including the Nagumo equations
    Valls, Claudia
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03):
  • [29] Method of Monotone Solutions for Reaction-Diffusion Equations
    Volpert V.
    Vougalter V.
    [J]. Journal of Mathematical Sciences, 2021, 253 (5) : 660 - 675
  • [30] Traveling waves for a boundary reaction-diffusion equation
    Caffarelli, L.
    Mellet, A.
    Sire, Y.
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (02) : 433 - 457