Monotone traveling waves for reaction-diffusion equations involving the curvature operator

被引:0
|
作者
Maurizio Garrione
Luís Sanchez
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica ed Applicazioni
[2] Faculdade de Ciências da Universidade de Lisboa,CMAF
来源
关键词
traveling waves; lower and upper solutions; mean curvature operator; 34C37; 35K57; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of monotone traveling waves u(t,x)=u(x+ct)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(t, x)=u(x+ct)$\end{document}, connecting two equilibria, for the reaction-diffusion PDE ut=(ux1+ux2)x+f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{t} = (\frac{u_{x}}{\sqrt{1+u_{x}^{2}}} )_{x} + f(u)$\end{document}. Assuming different forms for the reaction term f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} (among which we have the so-called types A, B, and C), we show that, concerning the admissible speeds, the situation presents both similarities and differences with respect to the classical case. We use a first order model obtained after a suitable change of variables. The model contains a singularity and therefore has some features which are not present in the case of linear diffusion. The technique used involves essentially shooting arguments and lower and upper solutions. Some numerical simulations are provided in order to better understand the features of the model.
引用
收藏
相关论文
共 50 条