Optimization and performance of cost-effective ultra-high performance concrete

被引:4
|
作者
Weina Meng
Mahdi Valipour
Kamal Henri Khayat
机构
[1] University of Science and Technology,Department of Civil, Architectural, and Environmental Engineering, Missouri
来源
Materials and Structures | 2017年 / 50卷
关键词
Conventional concrete sand; Cost-effective; Mix design; Rheological properties; Supplementary cementitious materials (SCMs); Ultra-high performance concrete (UHPC);
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a mix design method for ultra-high performance concrete (UHPC) prepared with high-volume supplementary cementitious materials and conventional concrete sand. The method involves the optimization of binder combinations to enhance packing density, compressive strength, and rheological properties. The water-to-cementitious materials ratio is then determined for pastes prepared with the selected binders. The sand gradation is optimized using the modified Andreasen and Andersen packing model to achieve maximum packing density. The binder-to-sand volume ratio is then determined based on the void content, required lubrication paste volume, and compressive strength. The optimum fiber volume is selected based on flowability and flexural performance. The high-range water reducer dosage and w/cm are then adjusted according to the targeted mini-slump flow and compressive strength. Finally, the optimized UHPC mix designs are evaluated to determine key properties that are relevant to the intended application. This mix design approach was applied to develop cost-effective UHPC materials. The results indicate that the optimized UHPC can develop 28-days compressive strength of 125 MPa under standard curing condition and 168–178 MPa by heat curing for 1 days Such mixtures have unit cost per compressive strength at 28 days of 4.1–4.5 $/m3/MPa under standard curing.
引用
收藏
相关论文
共 50 条
  • [31] Future research trends in high-performance concrete: cost-effective considerations
    Natl Taiwan Inst of Technology, Taipei, Taiwan
    Transp Res Rec, 1574 (49-55):
  • [32] Future research trends in high-performance concrete - Cost-effective considerations
    Hwang, CL
    Lee, LS
    ADVANCES IN CONCRETE AND CONCRETE PAVEMENT CONSTRUCTION, 1997, (1574): : 49 - 55
  • [33] Performance Assessment of Ultra-High Durability Concrete Produced From Recycled Ultra-High Durability Concrete
    Borg, Ruben Paul
    Cuenca, Estefania
    Garofalo, Roberto
    Schillani, Fabrizio
    Nasner, Milena Lozano
    Ferrara, Liberato
    FRONTIERS IN BUILT ENVIRONMENT, 2021, 7
  • [34] Ultra-High Performance Concrete Overlays for Concrete Bridge Decks
    Al-Basha, Ahmed J.
    Toledo, William K.
    Newtson, Craig M.
    Weldon, Brad D.
    3RD WORLD MULTIDISCIPLINARY CIVIL ENGINEERING, ARCHITECTURE, URBAN PLANNING SYMPOSIUM (WMCAUS 2018), 2019, 471
  • [35] Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC)
    Wang, J. J.
    Zhang, S. S.
    Nie, X. F.
    Yu, T.
    COMPOSITE STRUCTURES, 2023, 312
  • [36] Comparative study on the chemical and physical filling effects of binder materials in Green Ultra-High Performance Concrete and Ultra-High Performance Concrete
    Shi, Ye
    Zhang, Haoyan
    Long, Guangcheng
    Liu, Zhongxian
    Xie, Youjun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [37] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [38] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [39] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)
  • [40] Influence of hollow glass microspheres on the performance of lightweight ultra-high performance concrete and mixture proportion optimization
    Chen, Zhiyuan
    Zhang, Siheng
    Zheng, Wanying
    Fan, Hongyu
    Yu, Demei
    Fu, Tengfei
    Wu, Xi
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472