Dynamics of two Einstein–Friedmann cosmological models

被引:0
|
作者
Inna Basak
Jaume Llibre
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe completely the dynamics of the two Einstein–Friedmann cosmological models, which can be characterized by the Hamiltonians H=12(py2-px2)+e2xV(y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H = \frac{1}{2} (p_{y}^2 - p_{x}^2) + e^{2 x} V(y), \end{aligned}$$\end{document}with the cosmological potentials V(y)=eλy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(y)=e^{\lambda y}$$\end{document}, or V(y)=(a+by)ey\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(y)=(a+by)e^{y}$$\end{document} with λab≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda a b\ne 0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Quantum cosmological perfect fluid models in Einstein aether theory
    G. A. Monerat
    O. Goldoni
    F. G. Alvarenga
    G. Oliveira-Neto
    E. V. Corrêa Silva
    [J]. The European Physical Journal Plus, 137
  • [42] Existence and Uniqueness of Solutions of the Semiclassical Einstein Equation in Cosmological Models
    Paolo Meda
    Nicola Pinamonti
    Daniel Siemssen
    [J]. Annales Henri Poincaré, 2021, 22 : 3965 - 4015
  • [43] Integrable cosmological models from higher dimensional Einstein equations
    Sano, Masakazu
    Suzuki, Hisao
    [J]. PHYSICAL REVIEW D, 2007, 76 (06)
  • [44] Cosmological perturbation theory in generalized Einstein-Aether models
    Battye, Richard A.
    Pace, Francesco
    Trinh, Damien
    [J]. PHYSICAL REVIEW D, 2017, 96 (06)
  • [45] COMPATIBILITY OF THE BATSE GAMMA-RAY BURST DATA WITH GENERAL FRIEDMANN COSMOLOGICAL MODELS
    EMSLIE, AG
    HORACK, JM
    [J]. ASTROPHYSICAL JOURNAL, 1994, 435 (01): : 16 - 21
  • [46] Dynamics of two-scalar-field cosmological models beyond the exponential potential
    Li, Yu
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (14):
  • [47] Cosmological dynamics of dark matter Bose-Einstein condensation
    Harko, T.
    [J]. PHYSICAL REVIEW D, 2011, 83 (12):
  • [48] Tunneling dynamics in cosmological bounce models
    Bojowald, Martin
    Jones, Brenda
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (11):
  • [49] Singularities in Einstein-conformally coupled Higgs cosmological models
    Szabados, Laszlo B.
    Wolf, Gyorgy
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (10)
  • [50] POWER ASYMPTOTES OF HOMOGENEOUS COSMOLOGICAL MODELS IN EINSTEIN THEORY OF GRAVITATION
    MULLER, V
    SCHMIDT, HJ
    [J]. ANNALEN DER PHYSIK, 1987, 44 (07) : 545 - 552