Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water

被引:0
|
作者
Xiaoning Li
Jinyao Zhang
Hongtian Xie
Yuanfeng Pan
Jie Liu
Zhihong Huang
Xiang Long
Huining Xiao
机构
[1] North China Electric Power University,Hebei Key Lab of Power Plant Flue Gas Multi
[2] Ministry of Education,Pollutants Control, Department of Environmental Science and Engineering
[3] Guangxi University,MOE Key Laboratory of Resources and Environmental Systems Optimization
[4] ShengQing Environmental Protection Ltd. Co.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering
[5] University of New Brunswick,Department of Chemical Engineering
关键词
Sawdust; Zero-valent iron (ZVI); Heavy metal ions; Adsorption; Mechanism; Regeneration;
D O I
暂无
中图分类号
学科分类号
摘要
Sawdust loaded with zero-valent iron (S-ZVI) was prepared using a liquid phase reduction method for removing heavy metal ions from contaminated water. Surface chemistry and morphology of adsorbents were characterized with Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), SEM-mapping, EDX, and X-ray photoelectron spectrum (XPS). The results demonstrated that the zero-valent iron was successfully loaded onto the sawdust. The impact of various factors such as pH, initial metal ion concentration, temperature, and contact time on the removal capability of the adsorbents was systematically investigated. The equilibrium adsorption data showed that the adsorption of arsenic ions and Cr(III) followed the Langmuir model well, and the maximum adsorption reached 111.37 and 268.7 mg/g in an aqueous solution system. In addition, the adsorption kinetics was more accurately described by the pseudo-second-order model, suggesting the domination of chemical adsorption. Meanwhile, the results on recyclability indicated that the high performance of S-ZVI on the removal of arsenic ions was well maintained after three regeneration cycles. The adsorption mechanism revealed in this work suggested that S-ZVI improved the dispersion of ZVI by minimizing the agglomeration, thus leading to highly effective adsorption via chelation, electrostatic interaction, and redox reaction.
引用
收藏
页码:33234 / 33247
页数:13
相关论文
共 50 条
  • [21] Removal efficiency and mechanism of phycocyanin in water by zero-valent iron
    Liu, Cheng
    Chen, Dan-wen
    Ren, Yuan-yuan
    Chen, Wei
    CHEMOSPHERE, 2019, 218 : 402 - 411
  • [22] Rapid removal of flutriafol in water by zero-valent iron powder
    Ghauch, Antoine
    CHEMOSPHERE, 2008, 71 (05) : 816 - 826
  • [23] Zero-valent iron for removal of inorganic contaminants from low pH water
    Faculty of Mining and Geology, Silesian University of Technology, ul. Akademicka2, Gliwice
    44-100, Poland
    Environ. Prot. Eng., 1 (15-27):
  • [24] ZERO-VALENT IRON FOR REMOVAL OF INORGANIC CONTAMINANTS FROM LOW pH WATER
    Suponik, Tomasz
    ENVIRONMENT PROTECTION ENGINEERING, 2015, 41 (01): : 15 - 27
  • [25] Remediation of U(VI)-contaminated water using zero-valent iron
    Abdelouas, A
    Lutze, W
    Nuttall, E
    Gong, WL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1999, 328 (05): : 315 - 319
  • [26] Removal of the toxic cadmium ions from aqueous solutions by zero-valent iron nanoparticles
    Salam, M. Abdel
    Owija, N. Y.
    Kosa, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 18 (08) : 2391 - 2404
  • [27] Effect of common ions on nitrate removal by zero-valent iron from alkaline soil
    Tang, Cilai
    Zhang, Zengqiang
    Sun, Xining
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 231 : 114 - 119
  • [28] Removal of viruses and bacteriophages from drinking water using zero-valent iron
    Shi, Chunjian
    Wei, Jie
    Jin, Yan
    Kniel, Kalmia E.
    Chiu, Pei C.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 84 : 72 - 78
  • [29] Removal of the toxic cadmium ions from aqueous solutions by zero-valent iron nanoparticles
    M. Abdel Salam
    N. Y. Owija
    S. Kosa
    International Journal of Environmental Science and Technology, 2021, 18 : 2391 - 2404
  • [30] Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles
    Bezbaruah, Achintya N.
    Thompson, Jay M.
    Chisholm, Bret J.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES, 2009, 44 (06) : 518 - 524