Kinetic and galvanostatic studies of a polymer electrolyte for lithium-ion batteries

被引:0
|
作者
Agnieszka Swiderska-Mocek
Pawel Jakobczyk
Andrzej Lewandowski
机构
[1] Poznan University of Technology,Faculty of Chemical Technology
关键词
Polymer electrolyte; Ionic liquid; Sulfolane; Graphite anode; Li-ion battery;
D O I
暂无
中图分类号
学科分类号
摘要
Quaternary polymer electrolyte (PE) based on poly(acrylonitrile) (PAN), 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (EMImBF4), sulfolane (TMS) and lithium hexafluorophosphate salt (LiPF6) (PAN-EMImBF4-sulfolane-LIPF6) was prepared by the casting technique. Obtained PE films of ca. 0.2–0.3 mm in thickness showed good mechanical properties. They were examined using scanning electron microscopy (SEM), thermogravimetry (TGA, DSC), the flammability test, electrochemical impedance spectroscopy (EIS) and galvanostatic charging/discharging. SEM images revealed a structure consisting of a polymer network (PAN) and space probably occupied by the liquid phase (LiPF6 + EMImBF4 + sulfolane). The polymer electrolyte in contact with an outer flame source did not ignite; it rather underwent decomposition without the formation of flammable products. Room temperature specific conductivity was ca. 2.5 mS cm−1. The activation energy of the conding process was ca. 9.0 kJ mol−1. Compatibility of the polymer electrolyte with metallic lithium and graphite anodes was tested applying the galvanostatic method. Charge transfer resistance for the C6Li → Li+ + e− anode processes, estimated from EIS curve, was ca. 48 Ω. The graphite anode capacity stabilizes at ca. 350 mAh g−1 after the 30th cycle (20 mA g−1).
引用
收藏
页码:2825 / 2831
页数:6
相关论文
共 50 条
  • [31] Electrolyte Oxidation Pathways in Lithium-Ion Batteries
    Rinkel, Bernardine L. D.
    Hall, David S.
    Temprano, Israel
    Grey, Clare P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (35) : 15058 - 15074
  • [32] Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries
    Lewandowski, Andrzej
    Swiderska-Mocek, Agnieszka
    Waliszewski, Lukasz
    ELECTROCHIMICA ACTA, 2013, 92 : 404 - 411
  • [33] Bifunctional polymer electrolyte with higher lithium-ion transference number for lithium-sulfur batteries
    Wang Zi-long
    Jiang Jiang-hui
    Lu Jian-hao
    Wang An-bang
    Jin Zhao-ping
    Wang Wei-kun
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (12) : 3681 - 3693
  • [34] A review on lithium - Ion polymer electrolyte batteries
    Giridhar, P
    Prasad, KA
    Kalaiselvi, N
    Gopalakrishnan, K
    Ganesan, M
    Veluchamy, A
    BULLETIN OF ELECTROCHEMISTRY, 1999, 15 (9-10): : 414 - 418
  • [35] Solid polymer electrolyte for lithium ion batteries
    Wang H.
    Xie W.
    Guo C.
    Cailiao Daobao/Materials Review, 2016, 30 (04): : 33 - 36
  • [36] Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
    Zhang, Ruisi
    Chen, Yuanfen
    Montazami, Reza
    MATERIALS, 2015, 8 (05): : 2735 - 2748
  • [37] Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries
    Kim, Jaeyoung
    Park, Sangbin
    Hwang, Sunhyun
    Yoon, Won-Sub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 19 - 31
  • [38] Communication-Lithium Sulfonated Polyoxadiazole as a Novel Single-Ion Polymer Electrolyte in Lithium-Ion Batteries
    Gao, Huihui
    Mao, Jianzhao
    Li, Dazhe
    Yu, Yuanyuan
    Yang, Chen
    Qi, Shikai
    Liu, Qianli
    Zhu, Jiadeng
    Jiang, Mengjin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
  • [39] A novel electrolyte solvent for rechargeable lithium and lithium-ion batteries
    Zhang, SS
    Angell, CA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) : 4047 - 4053
  • [40] A low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, EJ
    Behl, WK
    JOURNAL OF POWER SOURCES, 2000, 88 (02) : 192 - 196