General-relativistic precession in a black-hole binary

被引:0
|
作者
Mark Hannam
Charlie Hoy
Jonathan E. Thompson
Stephen Fairhurst
Vivien Raymond
Marta Colleoni
Derek Davis
Héctor Estellés
Carl-Johan Haster
Adrian Helmling-Cornell
Sascha Husa
David Keitel
T. J. Massinger
Alexis Menéndez-Vázquez
Kentaro Mogushi
Serguei Ossokine
Ethan Payne
Geraint Pratten
Isobel Romero-Shaw
Jam Sadiq
Patricia Schmidt
Rodrigo Tenorio
Richard Udall
John Veitch
Daniel Williams
Anjali Balasaheb Yelikar
Aaron Zimmerman
机构
[1] Cardiff University,Gravity Exploration Institute
[2] Universitat de les Illes Balears,Departament de Física
[3] LIGO Laboratory,Institute for Gravitational Wave Astronomy and School of Physics and Astronomy
[4] California Institute of Technology,School of Physics and Astronomy
[5] LIGO Laboratory,Instituto Galego de Fisica de Altas Enerxias
[6] Massachusetts Institute of Technology,SUPA
[7] University of Oregon,undefined
[8] Institut de Fìsica d’Altes Energies (IFAE),undefined
[9] The Barcelona Institute of Science and Technology,undefined
[10] Missouri University of Science and Technology,undefined
[11] Max Planck Institute for Gravitational Physics,undefined
[12] University of Birmingham,undefined
[13] Monash University,undefined
[14] OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery,undefined
[15] Department of Applied Mathematics and Theoretical Physics,undefined
[16] Universidade de Santiago de Compostela,undefined
[17] University of Glasgow,undefined
[18] Rochester Institute of Technology,undefined
[19] University of Texas at Austin,undefined
来源
Nature | 2022年 / 610卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The general-relativistic phenomenon of spin-induced orbital precession has not yet been observed in strong-field gravity. Gravitational-wave observations of binary black holes (BBHs) are prime candidates, as we expect the astrophysical binary population to contain precessing binaries1,2. Imprints of precession have been investigated in several signals3–5, but no definitive identification of orbital precession has been reported in any of the 84 BBH observations so far5–7 by the Advanced LIGO and Virgo detectors8,9. Here we report the measurement of strong-field precession in the LIGO–Virgo–Kagra gravitational-wave signal GW200129. The binary’s orbit precesses at a rate ten orders of magnitude faster than previous weak-field measurements from binary pulsars10–13. We also find that the primary black hole is probably highly spinning. According to current binary population estimates, a GW200129-like signal is extremely unlikely, and therefore presents a direct challenge to many current binary-formation models.
引用
收藏
页码:652 / 655
页数:3
相关论文
共 50 条
  • [31] Black-hole excision scheme for general relativistic core-collapse supernova simulations
    Sykes, Bailey
    Mueller, Bernhard
    Cordero-Carrion, Isabel
    Cerda-Duran, Pablo
    Novak, Jerome
    PHYSICAL REVIEW D, 2023, 107 (10)
  • [32] BINARY BLACK-HOLE IN A DENSE STAR CLUSTER
    POLNAREV, AG
    REES, MJ
    ASTRONOMY & ASTROPHYSICS, 1994, 283 (01) : 301 - 312
  • [33] Hybrid black-hole binary initial data
    Mundim, Bruno C.
    Kelly, Bernard J.
    Zlochower, Yosef
    Nakano, Hiroyuki
    Campanelli, Manuela
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (13)
  • [34] THE BLACK-HOLE BINARY A0620-00
    MCCLINTOCK, JE
    REMILLARD, RA
    ASTROPHYSICAL JOURNAL, 1986, 308 (01): : 110 - 122
  • [35] CLOSE BLACK-HOLE BINARY-SYSTEMS
    BLACKBURN, JK
    DETWEILER, S
    PHYSICAL REVIEW D, 1992, 46 (06): : 2318 - 2333
  • [36] Analytical Black-Hole Binary Merger Waveforms
    McWilliams, Sean T.
    PHYSICAL REVIEW LETTERS, 2019, 122 (19)
  • [37] Estimating black hole spin from AGN SED fitting: the impact of general-relativistic ray tracing
    Hagen, Scott
    Done, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (03) : 3455 - 3467
  • [38] General-relativistic simulations of black-hole-neutron-star mergers: Effects of tilted magnetic fields
    Etienne, Zachariah B.
    Paschalidis, Vasileios
    Shapiro, Stuart L.
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [39] GENERAL-RELATIVISTIC VISUALIZATION
    Mueller, Thomas
    Weiskopf, Daniel
    COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (06) : 64 - 71
  • [40] General-Relativistic Covariance
    Neil Dewar
    Foundations of Physics, 2020, 50 : 294 - 318