Automatic hand motion analysis for the sign language space management

被引:0
|
作者
Mehrez Boulares
Mohamed Jemni
机构
[1] University of Tunis,Research Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE)
来源
关键词
Sign language space management; Hand motion analysis; Sign language space segmentation; Motion identity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new approach for the sign language (SL) space management based on hand motion analysis from RGB-D data. The aim of this work is to extract the equation of the hand motion curve in order to provide a parametric description of the sign. This description enables the SL space management by changing dynamically the entities locations, directions and motion velocity according to the SL sentence context. Our main contribution involves three modules: the automatic motion curve approximation, the automatic extraction of the motion signature (identity) and the automatic sign language space segmentation. The first module aims to apply regression techniques for approximating the motion curves of the two hands. In the second module, we exploited the Gaussian mixture models (GMM) to classify the different motion samples of the same sign based on the homogeneity constraint. The goal of this process is to eliminate the noise configurations and to extract the appropriate curve identity by choosing the cluster having the biggest votes. The average value of all the motion parameters in this cluster leads us to determine the movement identity of the sign. In the third module, we used GMM for the automatic sign space segmentation based on the highest density areas. Our motion analysis approach is experimented on 500 annotated American Sign Language signs and assessed by R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document} and MSE metrics for evaluating the approximation quality. We obtained good experimental results with 93% overall satisfaction rate with 468 signs having R2≥0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}\ge 0.85$$\end{document}. We improved the curve approximation of the rest of signs (32 signs) to reach R2≥0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}\ge 0.85$$\end{document} by using our motion segmentation approach.
引用
收藏
页码:311 / 341
页数:30
相关论文
共 50 条
  • [1] Automatic hand motion analysis for the sign language space management
    Boulares, Mehrez
    Jemni, Mohamed
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (02) : 311 - 341
  • [2] Sign Language Dataset for Automatic Motion Generation
    Villa-Monedero, Maria
    Gil-Martin, Manuel
    Saez-Trigueros, Daniel
    Pomirski, Andrzej
    San-Segundo, Ruben
    [J]. JOURNAL OF IMAGING, 2023, 9 (12)
  • [3] Modelling and segmenting subunits for sign language recognition based on hand motion analysis
    Han, Junwei
    Awad, George
    Sutherland, Alistair
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (06) : 623 - 633
  • [4] LEARNING MOTION DISFLUENCIES FOR AUTOMATIC SIGN LANGUAGE SEGMENTATION
    Farag, Iva
    Brock, Heike
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7360 - 7364
  • [5] Automatic Hand Gesture Segmentation for Recognition of Vietnamese Sign Language
    Duc-Hoang Vo
    Huu-Hung Huynh
    Thanh-Nghia Nguyen
    Meunier, Jean
    [J]. PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2016), 2016, : 368 - 373
  • [6] Automatic Hand Trajectory Segmentation and Phoneme Transcription for Sign Language
    Kong, W. W.
    Ranganath, Surendra
    [J]. 2008 8TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2008), VOLS 1 AND 2, 2008, : 502 - 507
  • [7] Bangla language modeling algorithm for automatic recognition of hand-sign-spelled Bangla sign language
    Muhammad Aminur Rahaman
    Mahmood Jasim
    Md. Haider Ali
    Md. Hasanuzzaman
    [J]. Frontiers of Computer Science, 2020, 14
  • [8] Bangla language modeling algorithm for automatic recognition of hand-sign-spelled Bangla sign language
    Rahaman, Muhammad Aminur
    Jasim, Mahmood
    Ali, Md Haider
    Hasanuzzaman, Md
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (03)
  • [9] Multiple Hypothesis Tracking with Sign Language Hand Motion Constraints
    Borg, Mark
    Camilleri, Kenneth P.
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 207 - 219
  • [10] A method for hand tracking and motion recognizing in Chinese sign language
    Zou, W
    Yuan, K
    Liu, JD
    Luo, BC
    [J]. 2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, : C543 - C549