LEARNING MOTION DISFLUENCIES FOR AUTOMATIC SIGN LANGUAGE SEGMENTATION

被引:0
|
作者
Farag, Iva [1 ]
Brock, Heike [2 ]
机构
[1] Saarland Univ, Saarland Informat Campus, D-66123 Saarbrucken, Germany
[2] Honda Res Inst Japan, 8-1 Honcho, Wako, Saitama 3510188, Japan
关键词
sign language understanding; temporal segmentation; angular motion features; disfluency detection; binary classification;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We introduce a novel technique for the automatic detection of word boundaries within continuous sentence expressions in Japanese Sign Language from three-dimensional body joint positions. First, the flow of signed sentence data within a temporal neighborhood is determined utilizing the spatial correlations between line segments of inter-joint pairs. Next, a frame-wise binary random forest classifier is trained to distinguish word and non-word frame content based on the extracted spatio-temporal features. The output of the classifier is used to propose an automatic word synthesis that achieves reliable and accurate sentence segmentation with an average frame-wise F1 score of 0.89. Evaluation with a baseline data set furthermore shows that the proposed approach can easily be adapted to distinguish between motion transitions and motion primitives for a coarse-action domain.
引用
收藏
页码:7360 / 7364
页数:5
相关论文
共 50 条
  • [1] Sign Language Dataset for Automatic Motion Generation
    Villa-Monedero, Maria
    Gil-Martin, Manuel
    Saez-Trigueros, Daniel
    Pomirski, Andrzej
    San-Segundo, Ruben
    [J]. JOURNAL OF IMAGING, 2023, 9 (12)
  • [2] Automatic skin segmentation and tracking in sign language recognition
    Han, J.
    Awad, G.
    Sutherland, A.
    [J]. IET COMPUTER VISION, 2009, 3 (01) : 24 - 35
  • [3] Semi-automatic sign segmentation from sign language video corpus
    Gonzalez, Matilde
    Collet, Christophe
    [J]. TRAITEMENT DU SIGNAL, 2012, 29 (3-5) : 333 - 358
  • [4] Automatic Hand Gesture Segmentation for Recognition of Vietnamese Sign Language
    Duc-Hoang Vo
    Huu-Hung Huynh
    Thanh-Nghia Nguyen
    Meunier, Jean
    [J]. PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2016), 2016, : 368 - 373
  • [5] Automatic Hand Trajectory Segmentation and Phoneme Transcription for Sign Language
    Kong, W. W.
    Ranganath, Surendra
    [J]. 2008 8TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2008), VOLS 1 AND 2, 2008, : 502 - 507
  • [6] Automatic hand motion analysis for the sign language space management
    Mehrez Boulares
    Mohamed Jemni
    [J]. Pattern Analysis and Applications, 2019, 22 : 311 - 341
  • [7] Automatic hand motion analysis for the sign language space management
    Boulares, Mehrez
    Jemni, Mohamed
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (02) : 311 - 341
  • [8] An Innovative Method for Automatic American Sign Language Interpretation using Machine Learning and Leap Motion Controller
    Jenkins, Jon
    Rashad, Sherif
    [J]. 2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 633 - 638
  • [9] An Intelligent Android System for Automatic Sign Language Recognition and Learning
    Shaban, Soha A.
    Elsheweikh, Dalia L.
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (08) : 923 - 940
  • [10] Visual feature segmentation with reinforcement learning for continuous sign language recognition
    Yuchun Fang
    Liangjun Wang
    Shiquan Lin
    Lan Ni
    [J]. International Journal of Multimedia Information Retrieval, 2023, 12