Gaining or losing perspective

被引:0
|
作者
Jon Lee
Daphne Skipper
Emily Speakman
机构
[1] University of Michigan,IOE Dept.
[2] U.S. Naval Academy,Department of Mathematics
[3] University of Colorado Denver,Department of Mathematical and Statistical Sciences
来源
关键词
Mixed-integer nonlinear optimization; Volume; Integer; Relaxation; Polytope; Perspective; Higher-dimensional power cone; Exponential cone;
D O I
暂无
中图分类号
学科分类号
摘要
We study MINLO (mixed-integer nonlinear optimization) formulations of the disjunction x∈{0}∪[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \{0\}\cup [l,u]$$\end{document}, where z is a binary indicator of x∈[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [l,u]$$\end{document} (u>ℓ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u> \ell > 0$$\end{document}), and y “captures” f(x), which is assumed to be convex on its domain [l, u], but otherwise y=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=0$$\end{document} when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document}. This model is useful when activities have operating ranges, we pay a fixed cost for carrying out each activity, and costs on the levels of activities are convex. Using volume as a measure to compare convex bodies, we investigate a variety of continuous relaxations of this model, one of which is the convex-hull, achieved via the “perspective reformulation” inequality y≥zf(x/z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \ge zf(x/z)$$\end{document}. We compare this to various weaker relaxations, studying when they may be considered as viable alternatives. In the important special case when f(x):=xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^p$$\end{document}, for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, relaxations utilizing the inequality yzq≥xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yz^q \ge x^p$$\end{document}, for q∈[0,p-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in [0,p-1]$$\end{document}, are higher-dimensional power-cone representable, and hence tractable in theory. One well-known concrete application (with f(x):=x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^2$$\end{document}) is mean-variance optimization (in the style of Markowitz), and we carry out some experiments to illustrate our theory on this application.
引用
收藏
页码:835 / 862
页数:27
相关论文
共 50 条
  • [41] LOSING PERSPECTIVE
    APPLEBY, BC
    PHI DELTA KAPPAN, 1979, 60 (10) : 766 - 766
  • [43] Gaining and losing the activity of antimicrobial [KL]n peptides
    Schweigardt, Fabian
    Wadhwani, Parvesh
    Strandberg, Erik
    Buerck, Jochen
    Reichert, Johannes
    Ulrich, Anne
    JOURNAL OF PEPTIDE SCIENCE, 2018, 24 : S128 - S128
  • [44] GAINING, LOSING, AND REGAINING MERIT-BASED SCHOLARSHIPS
    Ribar, David C.
    Rubenstein, Ross
    EDUCATION FINANCE AND POLICY, 2023, 18 (04) : 597 - 622
  • [45] Gaining Ground, Losing Ground: The Paradoxes of Rural Homelessness
    Forchuk, Cheryl
    Montgomery, Phyllis
    Berman, Helene
    Ward-Griffin, Catherine
    Csiernik, Rick
    Gorlick, Carolyne
    Jensen, Elsabeth
    Riesterer, Patrick
    CANADIAN JOURNAL OF NURSING RESEARCH, 2010, 42 (02) : 138 - 152
  • [46] Losing One's Head or Gaining a New Body?
    Eberl, Jason T.
    JOURNAL OF MEDICINE AND PHILOSOPHY, 2022, 47 (02): : 189 - 209
  • [47] The dimensions of phygital autonomy: losing some, gaining some
    Roten, Yonathan Silvain
    Vanheems, Regine
    JOURNAL OF MARKETING MANAGEMENT, 2024, 40 (11-12) : 996 - 1029
  • [48] MEDICAL IMPLICATIONS OF OBESITY - LOSING POUNDS, GAINING YEARS
    SKELTON, NK
    SKELTON, WP
    POSTGRADUATE MEDICINE, 1992, 92 (01) : 151 - &
  • [49] Gaining a wider perspective
    Thorp, James S.
    Abur, Ali
    Begovic, Miroslav
    Giri, Jay
    Avila-Rosales, Rene
    IEEE POWER & ENERGY MAGAZINE, 2008, 6 (05): : 43 - 51
  • [50] Ecological dynamics in the riverine aquifers of a gaining and losing river
    Larned, Scott T.
    Unwin, Martin J.
    Boustead, Nelson C.
    FRESHWATER SCIENCE, 2015, 34 (01) : 245 - 262