Gaining or losing perspective

被引:0
|
作者
Jon Lee
Daphne Skipper
Emily Speakman
机构
[1] University of Michigan,IOE Dept.
[2] U.S. Naval Academy,Department of Mathematics
[3] University of Colorado Denver,Department of Mathematical and Statistical Sciences
来源
关键词
Mixed-integer nonlinear optimization; Volume; Integer; Relaxation; Polytope; Perspective; Higher-dimensional power cone; Exponential cone;
D O I
暂无
中图分类号
学科分类号
摘要
We study MINLO (mixed-integer nonlinear optimization) formulations of the disjunction x∈{0}∪[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \{0\}\cup [l,u]$$\end{document}, where z is a binary indicator of x∈[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [l,u]$$\end{document} (u>ℓ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u> \ell > 0$$\end{document}), and y “captures” f(x), which is assumed to be convex on its domain [l, u], but otherwise y=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=0$$\end{document} when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document}. This model is useful when activities have operating ranges, we pay a fixed cost for carrying out each activity, and costs on the levels of activities are convex. Using volume as a measure to compare convex bodies, we investigate a variety of continuous relaxations of this model, one of which is the convex-hull, achieved via the “perspective reformulation” inequality y≥zf(x/z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \ge zf(x/z)$$\end{document}. We compare this to various weaker relaxations, studying when they may be considered as viable alternatives. In the important special case when f(x):=xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^p$$\end{document}, for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, relaxations utilizing the inequality yzq≥xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yz^q \ge x^p$$\end{document}, for q∈[0,p-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in [0,p-1]$$\end{document}, are higher-dimensional power-cone representable, and hence tractable in theory. One well-known concrete application (with f(x):=x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^2$$\end{document}) is mean-variance optimization (in the style of Markowitz), and we carry out some experiments to illustrate our theory on this application.
引用
收藏
页码:835 / 862
页数:27
相关论文
共 50 条
  • [1] Gaining or losing perspective
    Lee, Jon
    Skipper, Daphne
    Speakman, Emily
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 82 (04) : 835 - 862
  • [2] Losing Vision and Gaining Perspective
    Swenor, Bonnielin
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 321 (05): : 455 - 456
  • [3] Gaining or losing perspective for convex multivariate functions on a simplex
    Luze Xu
    Jon Lee
    Journal of Global Optimization, 2024, 89 : 379 - 413
  • [4] Gaining or losing perspective for convex multivariate functions on a simplex
    Xu, Luze
    Lee, Jon
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (02) : 379 - 413
  • [5] Gaining by Losing
    Eckert, Timothy L.
    MISSIOLOGY-AN INTERNATIONAL REVIEW, 2016, 44 (04) : 500 - 500
  • [6] Gaining or losing perspective for convex multivariate functions on box domains
    Xu, Luze
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2024,
  • [7] "Gaining or losing": The importance of the perspective in primary care health services valuation
    Martin-Fernandez, Jesus
    Ariza-Cardiel, Gloria
    Pena-Longobardo, Luz Ma
    Polentinos-Castro, Elena
    Oliva-Moreno, Juan
    Isabel Gil-Lacruz, Ana
    Medina-Palomino, Hector
    del Cura-Gonzalez, Isabel
    PLOS ONE, 2017, 12 (12):
  • [8] Losing weight, gaining flexibility
    Schut, JH
    PLASTICS WORLD, 1996, 54 (01): : 44 - &
  • [9] Gaining on the swings, losing on the roundabouts
    Hare, Doug
    CANADIAN VETERINARY JOURNAL-REVUE VETERINAIRE CANADIENNE, 2007, 48 (10): : 1003 - 1005
  • [10] Losing ground, gaining insight
    Naomi Farber
    Society, 1999, 37 : 16 - 23