Sharp regularity estimates for second order fully nonlinear parabolic equations

被引:0
|
作者
João Vitor da Silva
Eduardo V. Teixeira
机构
[1] Universidad de Buenos Aires,Department of Mathematics, FCEyN
[2] Ciudad Universitaria-Pabellón I-(C1428EGA),Departmento de Matemática
[3] Universidade Federal do Ceará,undefined
来源
Mathematische Annalen | 2017年 / 369卷
关键词
35K10; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp regularity estimates for viscosity solutions of fully nonlinear parabolic equations of the form Equt-FD2u,Du,X,t=f(X,t)inQ1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t - F\left( D^2u, Du, X, t\right) = f(X,t) \quad \text{ in } \quad Q_1, \end{aligned}$$\end{document}where F is elliptic with respect to the Hessian argument and f∈Lp,q(Q1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^{p,q}(Q_1)$$\end{document}. The quantity Ξ(n,p,q):=np+2q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n, p, q) := \frac{n}{p}+\frac{2}{q}$$\end{document} determines to which regularity regime a solution of (Eq) belongs. We prove that when 1<Ξ(n,p,q)<2-ϵF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< \Xi (n,p,q) < 2-\epsilon _F$$\end{document}, solutions are parabolically α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Hölder continuous for a sharp, quantitative exponent 0<α(n,p,q)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha (n,p,q) < 1$$\end{document}. Precisely at the critical borderline case, Ξ(n,p,q)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n,p,q)= 1$$\end{document}, we obtain sharp parabolic Log-Lipschitz regularity estimates. When 0<Ξ(n,p,q)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \Xi (n,p,q) <1$$\end{document}, solutions are locally of class C1+σ,1+σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+ \sigma , \frac{1+ \sigma }{2}}$$\end{document} and in the limiting case Ξ(n,p,q)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n,p,q) = 0$$\end{document}, we show parabolic C1,Log-Lip\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, \text {Log-Lip}}$$\end{document} regularity estimates provided F has “better” a priori estimates.
引用
收藏
页码:1623 / 1648
页数:25
相关论文
共 50 条
  • [41] Higher-order boundary regularity estimates for nonlocal parabolic equations
    Ros-Oton, Xavier
    Vivas, Hernan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [42] Some sharp estimates for parabolic equations
    Haraux, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) : 110 - 128
  • [43] Regularity for solutions of nonlinear second order evolution equations
    Jeong, Jin-Mun
    Kim, Jin-Ran
    Kim, Han-Geul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 209 - 222
  • [44] SECOND ORDER REGULARITY FOR DEGENERATE NONLINEAR ELLIPTIC EQUATIONS
    Canino, Annamaria
    De Giorgio, Elisa
    Sciunzi, Berardino
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 4231 - 4242
  • [45] Geometric regularity estimates for fully nonlinear elliptic equations with free boundaries
    da Silva, Joao Vitor
    Alves Leitao Junior, Raimundo
    Chaves Ricarte, Gleydson
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) : 38 - 55
  • [46] Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations
    Byun, Sun-Sig
    Lee, Mikyoung
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 162 : 178 - 196
  • [47] Estimates for fundamental solutions of second-order parabolic equations
    Liskevich, V
    Semenov, Y
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 521 - 543
  • [48] On properties of solutions to nonlinear parabolic equations of the second order
    Dept. of Mechanics and Mathematics, Moscow State University, Moscow, Russia
    J Dyn Control Syst, 4 (523-546):
  • [49] On properties of solutions to nonlinear parabolic equations of the second order
    Kondrat'ev V.A.
    Journal of Dynamical and Control Systems, 1999, 5 (4) : 523 - 546
  • [50] Sharp regularity estimates for quasilinear evolution equations
    Marcelo D. Amaral
    João Vitor da Silva
    Gleydson C. Ricarte
    Rafayel Teymurazyan
    Israel Journal of Mathematics, 2019, 231 : 25 - 45